zoukankan      html  css  js  c++  java
  • CodeForces

    Discription

    You are given an array of n integers a1... an. The cost of a subsegment is the number of unordered pairs of distinct indices within the subsegment that contain equal elements. Split the given array into k non-intersecting non-empty subsegments so that the sum of their costs is minimum possible. Each element should be present in exactly one subsegment.

    Input

    The first line contains two integers n and k (2 ≤ n ≤ 1052 ≤ k ≤ min (n, 20))  — the length of the array and the number of segments you need to split the array into.

    The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) — the elements of the array.

    Output

    Print single integer: the minimum possible total cost of resulting subsegments.

    Examples

    Input
    7 3
    1 1 3 3 3 2 1
    Output
    1
    Input
    10 2
    1 2 1 2 1 2 1 2 1 2
    Output
    8
    Input
    13 3
    1 2 2 2 1 2 1 1 1 2 2 1 1
    Output
    9

    Note

    In the first example it's optimal to split the sequence into the following three subsegments: [1], [1, 3], [3, 3, 2, 1]. The costs are 0, 0 and 1, thus the answer is 1.

    In the second example it's optimal to split the sequence in two equal halves. The cost for each half is 4.

    In the third example it's optimal to split the sequence in the following way: [1, 2, 2, 2, 1], [2, 1, 1, 1, 2], [2, 1, 1]. The costs are 4, 4, 1.

        和上题一样,分治优化决策单调性。

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=100005;
    int n,k,a[maxn],ql,qr,cnt[maxn];
    ll cost,F[maxn],G[maxn];
    
    inline void Get(int l,int r){
    	while(ql>l) cost+=(ll)cnt[a[--ql]],cnt[a[ql]]++;
    	while(qr<r) cost+=(ll)cnt[a[++qr]],cnt[a[qr]]++;
    	while(ql<l) cnt[a[ql]]--,cost-=(ll)cnt[a[ql++]];
    	while(qr>r) cnt[a[qr]]--,cost-=(ll)cnt[a[qr--]];
    }
    
    void dp(int l,int r,int L,int R){
    	if(l>r) return;
    	int mid=l+r>>1,MID=L;
    	for(int i=min(R+1,mid);i>L;i--){
    		Get(i,mid);
    		if(G[i-1]+cost<F[mid]) F[mid]=G[i-1]+cost,MID=i-1;
    	}
    	dp(l,mid-1,L,MID),dp(mid+1,r,MID,R);
    }
    
    int main(){
    	scanf("%d%d",&n,&k),ql=1,qr=n;
    	for(int i=1;i<=n;i++) scanf("%d",a+i),cost+=(ll)cnt[a[i]],cnt[a[i]]++,F[i]=cost;
    	for(int i=2;i<=k;i++){
    		memcpy(G,F,sizeof(F));
    		memset(F,0x3f,sizeof(F));
    		dp(1,n,0,n-1);
    	}
    	cout<<F[n]<<endl;
    	return 0;
    }
    

      

  • 相关阅读:
    leetcode 70 Climbing Stairs ----- java
    leetcode 69 Sqrt(x) ---java
    leetcode 68 Text Justification ----- java
    如何把iOS代码编译为Android应用
    OpenSource.com 评出 2014 年十佳开源软件
    js singleton
    Java NIO
    WPAD 的原理及实现
    WebKit JavaScript Binding添加新DOM对象的三种方式
    react
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8941528.html
Copyright © 2011-2022 走看看