Problem Statement
There are N squares arranged in a row. The squares are numbered 1, 2, …, N, from left to right.
Snuke is painting each square in red, green or blue. According to his aesthetic sense, the following M conditions must all be satisfied. The i-th condition is:
- There are exactly xi different colors among squares li, li+1, …, ri.
In how many ways can the squares be painted to satisfy all the conditions? Find the count modulo 109+7.
Constraints- 1≤N≤300
- 1≤M≤300
- 1≤li≤ri≤N
- 1≤xi≤3
Input is given from Standard Input in the following format:
N M
l1 r1 x1
l2 r2 x2
:
lM rM xM
Output
Print the number of ways to paint the squares to satisfy all the conditions, modulo 109+7.
Sample Input 13 1
1 3 3
Sample Output 1
6
The six ways are:
- RGB
- RBG
- GRB
- GBR
- BRG
- BGR
where R, G and B correspond to red, green and blue squares, respectively.
Sample Input 24 2
1 3 1
2 4 2
Sample Output 2
6
The six ways are:
- RRRG
- RRRB
- GGGR
- GGGB
- BBBR
- BBBG
1 3
1 1 1
1 1 2
1 1 3
Sample Output 3
0
There are zero ways.
Sample Input 48 10
2 6 2
5 5 1
3 5 2
4 7 3
4 4 1
2 3 1
7 7 1
1 5 2
1 7 3
3 4 2
Sample Output 4
108
还是小清新dp比较好,写起代码来非常的令人身心愉悦233333
让我们设 f[j][k][u] 为最近出现三种颜色的位置为j,k,u的方案数,那么转移直接把随便一维变成当前枚举的i即可。
至于限制条件,我们只需要在i==r的时候把 (j>=l) + (k>=l) + (u>=l) != x 的 f[j][k][u] 设置成0即可。
看起来是O(N^4)的??? 实际上因为至少一维要是i-1或者i,所以复杂度实际上是O(N^3)的。
#include<cstdio> #include<vector> #define ll long long using namespace std; #define pb push_back const int ha=1e9+7,maxn=305; inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} int f[maxn][maxn][maxn],n,m,k,L,R,ans; vector<int> g[maxn][4]; inline void update(int p){ for(int i=1;i<=3;i++) for(int j=g[p][i].size()-1,l;j>=0;j--){ l=g[p][i][j]; for(int a=0;a<=p;a++) for(int b=0;b<=p;b++) for(int c=(a<p&&b<p)?p:0;c<=p;c++) if((a>=l)+(b>=l)+(c>=l)!=i) f[a][b][c]=0; } } inline void dp(){ f[0][0][0]=1; for(int i=1;i<=n;i++){ for(int j=0;j<i;j++) for(int l=0,now;l<i;l++) for(int u=(j<i-1&&l<i-1)?i-1:0;u<i;u++){ now=f[j][l][u]; ADD(f[i][l][u],now); ADD(f[j][i][u],now); ADD(f[j][l][i],now); } update(i); } for(int j=0;j<=n;j++) for(int l=0;l<=n;l++) for(int u=(j<n&&l<n)?n:0;u<=n;u++) ADD(ans,f[j][l][u]); } int main(){ scanf("%d%d",&n,&m); for(int i=1;i<=m;i++){ scanf("%d%d%d",&L,&R,&k); g[R][k].pb(L); } dp(); printf("%d ",ans); return 0; }