zoukankan      html  css  js  c++  java
  • Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$Nsqrt{N}$吧$qwq$


    记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i][j]$;

    对于$[l,r]$,现将$ans$设为$[l,r]$中整块的答案;对于散块,将散块中的每个数$a[i]=vl$,有对应的$P[i]$,我们用$s[vl]$检查第$P[i]+ans+1$个$vl$对应的位置是否在$[l,r]$,如果在的话就更新答案$ans=ans+1$,并重复上述过程,直到$P[i]+ans+1$不在$[l,r]$中。

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<cctype>
    #include<cstdlib>
    #include<vector>
    #include<queue>
    #include<map>
    #include<set>
    #define ull unsigned long long
    #define ll long long
    #define R register int
    #define pause (for(R i=1;i<=10000000000;++i))
    #define OUT freopen("out.out","w",stdout);
    using namespace std;
    namespace Fread {
        static char B[1<<15],*S=B,*D=B;
        #define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
        inline int g() {
            R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
            do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
        } inline bool isempty(const char& ch) {return ch<=36||ch>=127;}
        inline void gs(char* s) {register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar()));}
    }using Fread::g; using Fread::gs;
    const int N=500010,M=710;
    int n,m,T,tot,lst; int cnt[N],pos[N],P[N],a[N],b[N],f[M][M];
    vector <int> s[N];
    #define pb push_back
    signed main() {
        n=g(),m=g(),T=pow(n,1/2.0); for(R i=1;i<=n;++i) a[i]=g(); memcpy(b,a,sizeof(int)*(n+1));
        sort(b+1,b+n+1); tot=unique(b+1,b+n+1)-b-1; 
        for(R i=1;i<=n;++i) a[i]=lower_bound(b+1,b+tot+1,a[i])-b;
        for(R i=1;i<=n;++i) s[a[i]].pb(i);
        for(R i=1;i<=n;++i) P[i]=++cnt[a[i]]-1; memset(cnt,0,sizeof(cnt));
        for(R i=1;i<=n;++i) pos[i]=(i-1)/T+1;
        for(R p=1,L=pos[n],mx=0;p<=L;++p,mx=0,memset(cnt,0,sizeof(cnt))) for(R t=p;t<=L;++t) {
            for(R i=(t-1)*T+1,LL=min(t*T,n);i<=LL;++i) mx=max(++cnt[a[i]],mx);
            f[p][t]=mx;
        } for(R i=1,l,r;i<=m;++i) { R ans=0;
            l=g()^lst,r=g()^lst;
            if(pos[l]==pos[r]) {
                for(R i=l;i<=r;++i) ans=max(ans,++cnt[a[i]]); for(R i=l;i<=r;++i) cnt[a[i]]=0;
            } else { R p=pos[l]+1,q=pos[r]-1; ans=f[p][q];
                for(R i=l,L=pos[l]*T;i<=L;++i) { R tmp=P[i];
                    while((tmp+ans)<s[a[i]].size()&&s[a[i]][tmp+ans]<=r) ++ans;
                } for(R i=q*T+1;i<=r;++i) { R tmp=P[i];
                    while((tmp-ans)>=0&&s[a[i]][tmp-ans]>=l) ++ans;
                }
            } printf("%d
    ",lst=ans); 
        }
    }

    2019.07.03

  • 相关阅读:
    【Leetcode_easy】922. Sort Array By Parity II
    【Leetcode_easy】925. Long Pressed Name
    【Leetcode_easy】872. Leaf-Similar Trees
    【Leetcode_easy】874. Walking Robot Simulation
    【Leetcode_easy】1128. Number of Equivalent Domino Pairs
    【VxWorks工程】基于opencv创建读取摄像头数据的工程error
    【Leetcode_easy】868. Binary Gap
    【Leetcode_easy】867. Transpose Matrix
    【Leetcode_easy】860. Lemonade Change
    第11章 拾遗5:IPv6和IPv4共存技术(3)_NAT-PT技术【全书完】
  • 原文地址:https://www.cnblogs.com/Jackpei/p/11126322.html
Copyright © 2011-2022 走看看