zoukankan      html  css  js  c++  java
  • 变分自编码器生成mnist数据

    变分自编码器生成mnist数据

    from __future__ import print_function
    import argparse
    import torch
    import torch.utils.data
    from torch import nn, optim
    from torch.nn import functional as F
    from torchvision import datasets, transforms
    from torchvision.utils import save_image
    
    
    parser = argparse.ArgumentParser(description='VAE MNIST Example')
    parser.add_argument('--batch-size', type=int, default=128, metavar='N',
                        help='input batch size for training (default: 128)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='enables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    
    torch.manual_seed(args.seed)
    
    device = torch.device("cuda" if args.cuda else "cpu")
    
    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('', train=True, download=True,
                       transform=transforms.ToTensor()),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('', train=False, transform=transforms.ToTensor()),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    
    
    class VAE(nn.Module):
        def __init__(self):
            super(VAE, self).__init__()
    
            self.fc1 = nn.Linear(784, 400)
            self.fc21 = nn.Linear(400, 20)
            self.fc22 = nn.Linear(400, 20)
            self.fc3 = nn.Linear(20, 400)
            self.fc4 = nn.Linear(400, 784)
    
        def encode(self, x):
            h1 = F.relu(self.fc1(x))
            return self.fc21(h1), self.fc22(h1)
    
        def reparameterize(self, mu, logvar):
            std = torch.exp(0.5*logvar)
            eps = torch.randn_like(std)
            return mu + eps*std
    
        def decode(self, z):
            h3 = F.relu(self.fc3(z))
            return torch.sigmoid(self.fc4(h3))
    
        def forward(self, x):
            mu, logvar = self.encode(x.view(-1, 784))
            z = self.reparameterize(mu, logvar)
            return self.decode(z), mu, logvar
    
    
    model = VAE().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    
    
    # Reconstruction + KL divergence losses summed over all elements and batch
    def loss_function(recon_x, x, mu, logvar):
        BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    
        # see Appendix B from VAE paper:
        # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
        # https://arxiv.org/abs/1312.6114
        # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
        KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    
        return BCE + KLD
    
    
    def train(epoch):
        model.train()
        train_loss = 0
        for batch_idx, (data, _) in enumerate(train_loader):
            data = data.to(device)
            optimizer.zero_grad()
            recon_batch, mu, logvar = model(data)
            loss = loss_function(recon_batch, data, mu, logvar)
            loss.backward()
            train_loss += loss.item()
            optimizer.step()
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader),
                    loss.item() / len(data)))
    
        print('====> Epoch: {} Average loss: {:.4f}'.format(
              epoch, train_loss / len(train_loader.dataset)))
    
    
    def test(epoch):
        model.eval()
        test_loss = 0
        with torch.no_grad():
            for i, (data, _) in enumerate(test_loader):
                data = data.to(device)
                recon_batch, mu, logvar = model(data)
                test_loss += loss_function(recon_batch, data, mu, logvar).item()
                if i == 0:
                    n = min(data.size(0), 8)
                    comparison = torch.cat([data[:n],
                                          recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
                    save_image(comparison.cpu(),
                             'results/reconstruction_' + str(epoch) + '.png', nrow=n)
    
        test_loss /= len(test_loader.dataset)
        print('====> Test set loss: {:.4f}'.format(test_loss))
    
    if __name__ == "__main__":
        for epoch in range(1, args.epochs + 1):
            train(epoch)
            test(epoch)
            with torch.no_grad():
                sample = torch.randn(64, 20).to(device)
                sample = model.decode(sample).cpu()
                save_image(sample.view(64, 1, 28, 28),
                           'results/sample_' + str(epoch) + '.png')
    
  • 相关阅读:
    编程风格与注意事项(一)
    BB-Black 初体验之远程控制篇
    我的BB-Black之旅……(一)
    等精度频率计设计中的猫腻
    Linux查看物理CPU个数、核数、逻辑CPU个数、Cpu型号
    基于TransportClient的elasticsearch(es)消费kafka数据---Java程序设计
    elasticsearch概述
    HBase 性能优化笔记
    hive1.2.1搭建遇到的问题
    Hbase的表设计
  • 原文地址:https://www.cnblogs.com/Jason66661010/p/13678948.html
Copyright © 2011-2022 走看看