zoukankan      html  css  js  c++  java
  • INT104-lab13[Parzen Window Method][此方法无数据集划分]

    利用高斯函数,使得较近的数据点决策作用更大!

    代码也比较简洁!Accuracy=0.9466666666666667 

    注意一下:

    其实h=1的选取相当于你的先验知识;或者说多尝试几次

    让电脑自己试错,有时候其实方法直接的界定其实没有那么严格啦

     1 import numpy as np
     2 from collections import Counter
     3 
     4 
     5 def read(path: str) -> tuple:
     6     f = open(path, "r")
     7     text = f.readlines()
     8     f.close()
     9     X, y = [], []
    10     class_map, class_idx = {}, 0
    11     class_anti_map = {}
    12     for row in text:
    13         row = row.strip()
    14         if len(row) == 0:
    15             continue
    16         items = row.split(",")
    17         X.append([float(item) for item in items[:-1]])
    18         if items[-1] not in class_map:
    19             class_map[items[-1]] = class_idx
    20             class_anti_map[class_idx] = items[-1]
    21             class_idx += 1
    22         y.append(class_map[items[-1]])
    23     return X, y, len(y), len(X[0]), class_map, class_idx, class_anti_map
    24 
    25 
    26 def parzenWindowAlgorithm(X, y, class_map, class_anti_map, class_size, n, m, hyperparameter):
    27     dic = Counter(y)
    28     P0 = [(dic[class_map[class_anti_map[i]]] / n) for i in range(class_size)]
    29     P1 = []
    30     hd = np.power(hyperparameter, m)
    31     for x in X:
    32         p = [0 for _ in range(class_size)]
    33         for i in range(n):
    34             dis = np.linalg.norm((np.array(x) - np.array(X[i]) / hyperparameter))
    35             fai = gaussianKernel(dis)
    36             p[y[i]] += fai / hd
    37         P1.append(p)
    38     predict_y = []
    39     for i in range(n):
    40         p = []
    41         for k in range(class_size):
    42             p.append([-P0[k] * P1[i][k], k])
    43         p.sort(key=lambda x: x[0])
    44         predict_y.append(p[0][1])
    45     return predict_y
    46 
    47 
    48 def gaussianKernel(u):
    49     return np.exp(-u * u / 2) / np.sqrt(2 * np.pi)
    50 
    51 
    52 if __name__ == '__main__':
    53     X, y, n, m, class_map, class_size, class_anti_map = read("iris.data")
    54 
    55     predict_y = parzenWindowAlgorithm(X, y, class_map, class_anti_map, class_size, n, m, 1)
    56 
    57     for i in range(n):
    58         print("No.", (i + 1), X[i], "y =", y[i], "predict_y =", predict_y[i], (y[i] == predict_y[i]))
    59     print("Accuracy =", (len([i for i in range(n) if y[i] == predict_y[i]]) / n))
    ~~Jason_liu O(∩_∩)O
  • 相关阅读:
    Spring、Spring Boot 和 Spring Cloud 的关系
    Spring Boot 如何设置支持跨域请求?
    什么是嵌入式服务器?我们为什么要使用嵌入式服务器呢?
    nginx配置域名,不要端口
    域名解析以及nginx服务器设置
    为什么使用nginx
    RabbitMQ下载与安装(window版)
    spring的@ComponentScan注解
    spring的@EnableScheduling注解
    日志切割: logrotate、python、shell实现
  • 原文地址:https://www.cnblogs.com/JasonCow/p/14823413.html
Copyright © 2011-2022 走看看