zoukankan      html  css  js  c++  java
  • Relativity 04: CH4CH5

    4.

    The Galileian System of Co-ordinates

    As is well known, the fundamental law of the mechanics of Galilei-Newton, which is known as the law of inertia, can be stated thus: A body removed sufficiently far from other bodies continues in a state of rest or of uniform motion in a straight line. This law not only says something about the motion of the bodies, but it also indicates the reference-bodies or systems of coordinates, permissible in mechanics, which can be used in mechanical description. The visible fixed stars are bodies for which the law of inertia certainly holds to a high degree of approximation. Now if we use a system of co-ordinates which is rigidly attached to the earth, then, relative to this system, every fixed star describes a circle of immense radius in the course of an astronomical day, a result which is opposed to the statement of the law of inertia. So that if we adhere to this law we must refer these motions only to systems of coordinates relative to which the fixed stars do not move in a circle. A system of co-ordinates of which the state of motion is such that the law of inertia holds relative to it is called a " Galileian system of co-ordinates." The laws of the mechanics of Galflei-Newton can be regarded as valid only for a Galileian system of co-ordinates.

    众所周知,伽利略-牛顿力学的基本定律,即惯性定律,可以这样表述:一个离其他物体足够远的物体继续保持静止或匀速直线运动的状态。这个定律不仅说明了物体的运动,而且还指出了力学中允许的参考物体或坐标系,可以用于机械描述。可见的固定恒星是惯性定律具有高度近似性的天体。现在,如果我们使用一个与地球紧密相连的坐标系,那么相对于这个坐标系,每个固定恒星在一个天文日的过程中都会描绘出一个半径巨大的圆,这个结果与惯量定律的陈述相反。因此,如果我们坚持这个定律,我们必须把这些运动仅仅指那些固定恒星不在一个圆内运动的坐标系。一种坐标系,其运动状态与惯性定律相对应,称为“伽利略坐标系”。伽弗莱-牛顿力学定律仅对伽利略坐标系有效。

    5.

    The Principle of Relativity
    (in the restricted sense)

    In order to attain the greatest possible clearness, let us return to our example of the railway carriage supposed to be travelling uniformly. We call its motion a uniform translation ("uniform" because it is of constant velocity and direction, " translation " because although the carriage changes its position relative to the embankment yet it does not rotate in so doing). Let us imagine a raven flying through the air in such a manner that its motion, as observed from the embankment, is uniform and in a straight line. If we were to observe the flying raven from the moving railway carriage. we should find that the motion of the raven would be one of different velocity and direction, but that it would still be uniform and in a straight line. Expressed in an abstract manner we may say : If a mass m is moving uniformly in a straight line with respect to a co-ordinate system K, then it will also be moving uniformly and in a straight line relative to a second co-ordinate system K1 provided that the latter is executing a uniform translatory motion with respect to K. In accordance with the discussion contained in the preceding section, it follows that:

    If K is a Galileian co-ordinate system. then every other co-ordinate system K' is a Galileian one, when, in relation to K, it is in a condition of uniform motion of translation. Relative to K1 the mechanical laws of Galilei-Newton hold good exactly as they do with respect to K.

    We advance a step farther in our generalisation when we express the tenet thus: If, relative to K, K1 is a uniformly moving co-ordinate system devoid of rotation, then natural phenomena run their course with respect to K1 according to exactly the same general laws as with respect to K. This statement is called the principle of relativity (in the restricted sense).

    As long as one was convinced that all natural phenomena were capable of representation with the help of classical mechanics, there was no need to doubt the validity of this principle of relativity. But in view of the more recent development of electrodynamics and optics it became more and more evident that classical mechanics affords an insufficient foundation for the physical description of all natural phenomena. At this juncture the question of the validity of the principle of relativity became ripe for discussion, and it did not appear impossible that the answer to this question might be in the negative.

    Nevertheless, there are two general facts which at the outset speak very much in favour of the validity of the principle of relativity. Even though classical mechanics does not supply us with a sufficiently broad basis for the theoretical presentation of all physical phenomena, still we must grant it a considerable measure of " truth," since it supplies us with the actual motions of the heavenly bodies with a delicacy of detail little short of wonderful. The principle of relativity must therefore apply with great accuracy in the domain of mechanics. But that a principle of such broad generality should hold with such exactness in one domain of phenomena, and yet should be invalid for another, is a priori not very probable.

    We now proceed to the second argument, to which, moreover, we shall return later. If the principle of relativity (in the restricted sense) does not hold, then the Galileian co-ordinate systems K, K1K2, etc., which are moving uniformly relative to each other, will not be equivalent for the description of natural phenomena. In this case we should be constrained to believe that natural laws are capable of being formulated in a particularly simple manner, and of course only on condition that, from amongst all possible Galileian co-ordinate systems, we should have chosen one (K0) of a particular state of motion as our body of reference. We should then be justified (because of its merits for the description of natural phenomena) in calling this system " absolutely at rest," and all other Galileian systems K " in motion." If, for instance, our embankment were the system K0 then our railway carriage would be a system K, relative to which less simple laws would hold than with respect to K0. This diminished simplicity would be due to the fact that the carriage K would be in motion (i.e."really")with respect to K0. In the general laws of nature which have been formulated with reference to K, the magnitude and direction of the velocity of the carriage would necessarily play a part. We should expect, for instance, that the note emitted by an organpipe placed with its axis parallel to the direction of travel would be different from that emitted if the axis of the pipe were placed perpendicular to this direction.

    Now in virtue of its motion in an orbit round the sun, our earth is comparable with a railway carriage travelling with a velocity of about 30 kilometres per second. If the principle of relativity were not valid we should therefore expect that the direction of motion of the earth at any moment would enter into the laws of nature, and also that physical systems in their behaviour would be dependent on the orientation in space with respect to the earth. For owing to the alteration in direction of the velocity of revolution of the earth in the course of a year, the earth cannot be at rest relative to the hypothetical system K0 throughout the whole year. However, the most careful observations have never revealed such anisotropic properties in terrestrial physical space, i.e. a physical non-equivalence of different directions. This is very powerful argument in favour of the principle of relativity.

     

  • 相关阅读:
    JavaScript之arguments对象讲解
    JavaScript之工厂方式 构造函数方式 原型方式讲解
    JavaScript之常用方法讲解
    JavaScript之引用类型讲解
    JavaScript之数据类型讲解
    JavaScript之Cookie讲解
    __cdecl __stdcall __fastcall之函数调用约定讲解
    xp/2003开关3389指令
    php源码安装常用配置参数和说明
    用yum查询想安装的软件
  • 原文地址:https://www.cnblogs.com/JasperZhao/p/13644946.html
Copyright © 2011-2022 走看看