zoukankan      html  css  js  c++  java
  • 机器学习四大分类

          机器学习分为四大块,分别是classification (分类),regression (回归), clustering (聚类), dimensionality reduction (降维)。

    • 聚类(clustering)

      无监督学习的结果。聚类的结果将产生一组集合,集合中的对象与同集合中的对象彼此相似,与其他集合中的对象相异。

      没有标准参考的学生给书本分的类别,表示自己认为这些书可能是同一类别的(具体什么类别不知道,没有标签和目标,即不是判断书的好坏(目标,标签),只能凭借特征而分类)。

    • 分类(classification)

      有监督学习的两大应用之一,产生离散的结果。

      例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”。(即有目标和标签,能判断目标特征是属于哪一个类型)

    • 回归(regression)

      有监督学习的两大应用之一,产生连续的结果。

      例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断此人20年后今后的经济能力”的结果,结果是连续的,往往得到一条回归曲线。当输入自变量不同时,输出的因变量非离散分布(不仅仅是一条线性直线,多项曲线也是回归曲线)。

    • 1,给定一个样本特征 , 我们希望预测其对应的属性值 , 如果  是离散的, 那么这就是一个分类问题,反之,如果  是连续的实数, 这就是一个回归问题。

      2,如果给定一组样本特征 , 我们没有对应的属性值 , 而是想发掘这组样本在 二维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。

      3,如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题。

  • 相关阅读:
    Criteria和Detachedcriteria的区别及应用(转)
    Hibernate中DetachedCriteria的使用(转)
    jQuery的dom操作
    MyEclipse6.5安装SVN插件的三种方法(转)
    hibernate反向生成实体类
    PHP写文本日志
    关于微软ADO.NET提供的组件库里的UpdateDataSet()的用法心得
    比较文件内容是否一致
    在ListView的顶部和底部加入其他View
    Android中使用shape来定义控件的显示属性
  • 原文地址:https://www.cnblogs.com/Javame/p/12587775.html
Copyright © 2011-2022 走看看