zoukankan      html  css  js  c++  java
  • 机器学习 实验一 感知器及其应用

    1. 作业信息

    这个作业属于哪个课程 机器学习
    这个作业要求在哪里 作业要求
    学号 3180701312

    2.实验目的

    (1)理解感知器算法原理,能实现感知器算法;
    (2)掌握机器学习算法的度量指标;
    (3)掌握最小二乘法进行参数估计基本原理;
    (4)针对特定应用场景及数据,能构建感知器模型并进行预测。

    3.实验内容

    (1)安装Pycharm,注册学生版。
    (2)安装常见的机器学习库,如Scipy、Numpy、Pandas、Matplotlib,sklearn等。
    (3)编程实现感知器算法。
    (4)熟悉iris数据集,并能使用感知器算法对该数据集构建模型并应用。

    4.实验报告要求

    (1)按实验内容撰写实验过程;
    (2)报告中涉及到的代码,每一行需要有详细的注释;
    (3)按自己的理解重新组织,禁止粘贴复制实验内容;

    5.代码

    #导入包
    import pandas as pd
    import numpy as np
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    # load data,下载数据
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)#生成表格
    df['label'] = iris.target
    
    # 统计鸢尾花的种类与个数
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    df.label.value_counts() # value_counts() 函数可以对df里面label每个值进行计数并且排序,默认是降序
    

    结果:
    2 50
    1 50
    0 50
    Name: label, dtype: int64

    #画数据的散点图
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')#将数据的前50个数据绘制散点图
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')#将数据的50-100之间的数据绘制成散点图
    plt.xlabel('sepal length')#给x坐标命名
    plt.ylabel('sepal width')#给y坐标命名
    plt.legend()
    

    结果:

    #对数据进行预处理
    data = np.array(df.iloc[:100, [0, 1, -1]])#iloc函数:通过行号来取行数据,读取数据前100行的第0,1列和最后一列
    X, y = data[:,:-1], data[:,-1]#X为data数据中除去最后一列的数据,y为data数据的最后一列(y中有两类0和1)
    y = np.array([1 if i == 1 else -1 for i in y])#将y中的两类(0和1)改为(-1和1)两类
    
    # 定义算法
    # 此处为一元一次线性方程 
    class Model:
        def __init__(self):
            self.w = np.ones(len(data[0])-1, dtype=np.float32) #初始w的值
            self.b = 0 #初始b的值为0
            self.l_rate = 0.1 #步长为0.1
            # self.data = data
     
        def sign(self, x, w, b):
            y = np.dot(x, w) + b #dot进行矩阵的乘法运算,y=w*x+b
            return y
     
        #随机梯度下降法
        def fit(self, X_train, y_train):
            is_wrong = False #初始假设有误分点
            while not is_wrong:
                wrong_count = 0 #误分点个数初始为0
                for d in range(len(X_train)):
                    X = X_train[d] #取X_train一组及一行数据
                    y = y_train[d] #取y_train一组及一行数据
                    if y * self.sign(X, self.w, self.b) <= 0: #为误分点
                        self.w = self.w + self.l_rate*np.dot(y, X) #对w和b进行更新
                        self.b = self.b + self.l_rate*y
                        wrong_count += 1 #误分点个数加1
                if wrong_count == 0: #误分点个数为0,算法结束
                    is_wrong = True
            return 'Perceptron Model!'
     
        def score(self):
            pass
    
    perceptron = Model()#生成一个算法对象
    perceptron.fit(X, y)#将测试数据代入算法中
    

    结果:
    'Perceptron Model!'

    #画出超平面
    x_points = np.linspace(4, 7,10) #用于产生4,7之间的10点行矢量。其中4、7、10分别为起始值、中止值、元素个数。----产生x坐标
    y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1] #绘制超平面
    plt.plot(x_points, y_)
    plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')#将数据的前50个数据绘制散点图
    plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')#将数据的50-100之间的数据绘制成散点图
    plt.xlabel('sepal length')#给x坐标命名
    plt.ylabel('sepal width')#给y坐标命名
    plt.legend()
    

    结果:

    #生成sklearn结果与上面手写函数的结果对比
    from sklearn.linear_model import Perceptron ## 导入感知机模型
    
    clf = Perceptron(fit_intercept=False, max_iter=1000, shuffle=False) 
    #fit_intercept(默认True)是否对参数 b 进行估计,若为False则数据应是中心化的
    #max_iter(默认1000)最大迭代次数
    #shuffle(默认True)每轮训练后是否打乱数据
    clf.fit(X, y)
    

    结果:
    Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=1.0,
    fit_intercept=False, max_iter=1000, n_iter_no_change=5, n_jobs=None,
    penalty=None, random_state=0, shuffle=False, tol=0.001,
    validation_fraction=0.1, verbose=0, warm_start=False)

    print(clf.coef_)#权值w参数
    print(clf.intercept_)#偏置b参数
    

    结果:
    [[ 16.3 -24.2]]
    [0.]

    #画出sklearn结果的散点图
    x_ponits = np.arange(4, 8)#x,为4,5,6,7,默认步长为1,起始为4,终止为8,不取8
    y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]#绘制超平面
    plt.plot(x_ponits, y_)
    plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')#将数据的前50个数据绘制散点图
    plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')#将数据的50-100之间的数据绘制成散点图
    plt.xlabel('sepal length')#给x坐标命名
    plt.ylabel('sepal width')#给y坐标命名
    plt.legend()
    

    结果:

    6.实验小结

    二分类模型
    (f(x) = sign(w*x + b))
    损失函数 (L(w, b) = -Sigma{y_{i}(w*x_{i} + b)})
    算法
    随即梯度下降法 Stochastic Gradient Descent随机抽取一个误分类点使其梯度下降。
    (w = w + eta y_{i}x_{i})
    (b = b + eta y_{i})
    当实例点被误分类,即位于分离超平面的错误侧,则调整w, b的值,使分离超平面向该无分类点的一侧移动,直至误分类点被正确分类
    拿出iris数据集中两个分类的数据和[sepal length,sepal width]作为特征。

  • 相关阅读:
    纯CSS实现自动轮播,CSS变量的定义与使用,计算属性的使用
    input:file样式怎样修改
    Div转为Canvas简直不要太好玩~~~
    oracle nvl2函数
    oracle 子查询
    oracle 分组函数执行分析
    oracle外部表
    oracle USING 用法
    面向对象进阶
    面向对象基础
  • 原文地址:https://www.cnblogs.com/Jean1225/p/14725547.html
Copyright © 2011-2022 走看看