zoukankan      html  css  js  c++  java
  • Loser’s “Bruteforced Cholesky Factorization for Sparse Matrix on CUDA”

    Cholesky Factorization (CF) needs to access matrix elements along both column and row, so that to the sparse matrix, addressing would always be the greatest problem, this utility for dense matrix is quite easy. My brute-forced implementation is much slower than MKL's dcsrilu0.

    CF method is a highly serialized algorithm, it processes the whole matrix row by row, and to the 1st row, its complexity is log(n*n/2), and then it would be faster and faster.

    In fact I thought several methods as following,

    • Gathering and Scattering. As the bottleneck is the loop in Phase2, it need to access column and row, we may use gathering and scattering to simplify memeory access, but that’s as the same as CPU’s.
    • Transpose the matrix as a backup, so that access column will countious, but need to sync both matrix at the end of each step, still a overhead.

    Here is the code, workable, slow, you may improve it by yourself, I switched to CPU, no sh*t & fu*k GPU.

      1:  #include <iostream>
      2:   
      3:  __device__ bool ReadCSR(const double *vals, const int *rows, const int *cols, const int r, const int c, double * v)
      4:  {
      5:      int i, j;
      6:   
      7:      i = rows[r];
      8:      j = rows[r + 1];
      9:   
     10:      i = cols[i];
     11:      j = cols[j - 1];
     12:   
     13:      if (c < i)
     14:      {
     15:          return -1;
     16:      }
     17:   
     18:      if (c > j)
     19:      {
     20:          return 1;
     21:      }
     22:   
     23:      for (i = rows[r]; i < rows[r + 1]; ++ i)
     24:      {
     25:          j = cols[i];
     26:          if (j == c)
     27:          {
     28:              *v = vals[i];
     29:              return 0;
     30:          }
     31:      }
     32:   
     33:      return -1;
     34:  }
     35:   
     36:  __device__ void WriteCSR(double * vals, const int * rows, const int * cols, const int r, const int c, const double v)
     37:  {
     38:      int i, j;
     39:      for (i = rows[r]; i < rows[r + 1]; ++ i)
     40:      {
     41:          j = cols[i];
     42:          if (j == c)
     43:          {
     44:              vals[i] = v;
     45:          }
     46:      }
     47:  }
     48:   
     49:  __global__ void Phase1(const int k, double *vals, const int *rows, const int *cols)
     50:  {
     51:      int i = blockIdx.x;
     52:      if (i > k)
     53:      {
     54:          double Akk = 0.0;
     55:          ReadCSR(vals, rows, cols, k, k, &Akk);
     56:          Akk = sqrt(Akk);
     57:   
     58:          double Aik = 0.0f;
     59:          if (ReadCSR(vals, rows, cols, i, k, &Aik) == 0)
     60:          {
     61:              WriteCSR(vals, rows, cols, i, k, Aik / Akk);
     62:          }
     63:      }
     64:  }
     65:   
     66:  __global__ void Phase2(const int k, double *vals, const int *rows, const int *cols)
     67:  {
     68:      int j = blockIdx.x;
     69:      int r = gridDim.x;
     70:   
     71:      if (j > k)
     72:      {
     73:          for (int i = j; i < r; ++ i)
     74:          {
     75:              double Aij = 0.0;
     76:              int a = ReadCSR(vals, rows, cols, i, j, &Aij);
     77:              if (a == 0)
     78:              {
     79:                  double Aik = 0.0, Ajk = 0.0;
     80:                  ReadCSR(vals, rows, cols, i, k, &Aik);
     81:                  ReadCSR(vals, rows, cols, j, k, &Ajk);
     82:                  WriteCSR(vals, rows, cols, i, j, Aij - Aik * Ajk);
     83:              }
     84:              else if (a > 0)
     85:              {
     86:                  break;
     87:              }
     88:          }
     89:      }
     90:  }
     91:   
     92:  __global__ void Phase3(const int k, double *vals, const int *rows, const int *cols)
     93:  {
     94:      double Akk = 0.0;
     95:      ReadCSR(vals, rows, cols, k, k, &Akk);
     96:      Akk = sqrt(Akk);
     97:      WriteCSR(vals, rows, cols, k, k, Akk);
     98:  }
     99:   
    100:  void test(const int numRow, double *vals, const int *rows, const int *cols)
    101:  {
    102:      for (int k = 0; k < numRow; ++ k)
    103:      {
    104:          std::cout << k << std::endl;
    105:          Phase1<<<numRow, 1>>>(k, vals, rows, cols);
    106:          Phase2<<<numRow, 1>>>(k, vals, rows, cols);
    107:          Phase3<<<1,      1>>>(k, vals, rows, cols);
    108:      }
    109:  }
    110:   
    111:   

    Apl. 24

    Found a paper used ELLPACK-R instead of CSR. I will take a try.

  • 相关阅读:
    利用python求非线性方程
    迪士尼穷游攻略
    爬虫八之爬取京东商品信息
    爬虫七之分析Ajax请求并爬取今日头条
    爬虫五之Selenium
    爬虫4之pyquery
    前端传入 SQL 语句 到后端执行
    手写分页处理
    集合(Map,List)分组:多属性进行分组
    java 枚举类非常好的运用实例
  • 原文地址:https://www.cnblogs.com/Jedimaster/p/2467020.html
Copyright © 2011-2022 走看看