zoukankan      html  css  js  c++  java
  • Dapper

    Dapper - a simple object mapper for .Net

    Build status

    Release Notes

    Located at stackexchange.github.io/Dapper

    Packages

    MyGet Pre-release feed: https://www.myget.org/gallery/dapper

    PackageNuGet StableNuGet Pre-releaseDownloadsMyGet
    Dapper Dapper Dapper Dapper Dapper MyGet
    Dapper.Contrib Dapper.Contrib Dapper.Contrib Dapper.Contrib Dapper.Contrib MyGet
    Dapper.EntityFramework Dapper.EntityFramework Dapper.EntityFramework Dapper.EntityFramework Dapper.EntityFramework MyGet
    Dapper.EntityFramework.StrongName Dapper.EntityFramework.StrongName Dapper.EntityFramework.StrongName Dapper.EntityFramework.StrongName Dapper.EntityFramework.StrongName MyGet
    Dapper.Rainbow Dapper.Rainbow Dapper.Rainbow Dapper.Rainbow Dapper.Rainbow MyGet
    Dapper.SqlBuilder Dapper.SqlBuilder Dapper.SqlBuilder Dapper.SqlBuilder Dapper.SqlBuilder MyGet
    Dapper.StrongName Dapper.StrongName Dapper.StrongName Dapper.StrongName Dapper.StrongName MyGet

    Features

    Dapper is a NuGet library that you can add in to your project that will extend your IDbConnection interface.

    It provides 3 helpers:

    Execute a query and map the results to a strongly typed List

    public static IEnumerable<T> Query<T>(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)

    Example usage:

    public class Dog
    {
        public int? Age { get; set; }
        public Guid Id { get; set; }
        public string Name { get; set; }
        public float? Weight { get; set; }
    
        public int IgnoredProperty { get { return 1; } }
    }
    
    var guid = Guid.NewGuid();
    var dog = connection.Query<Dog>("select Age = @Age, Id = @Id", new { Age = (int?)null, Id = guid });
    
    Assert.Equal(1,dog.Count());
    Assert.Null(dog.First().Age);
    Assert.Equal(guid, dog.First().Id);

    Execute a query and map it to a list of dynamic objects

    public static IEnumerable<dynamic> Query (this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)

    This method will execute SQL and return a dynamic list.

    Example usage:

    var rows = connection.Query("select 1 A, 2 B union all select 3, 4");
    
    Assert.Equal(1, (int)rows[0].A);
    Assert.Equal(2, (int)rows[0].B);
    Assert.Equal(3, (int)rows[1].A);
    Assert.Equal(4, (int)rows[1].B);

    Execute a Command that returns no results

    public static int Execute(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null)

    Example usage:

    var count = connection.Execute(@"
      set nocount on
      create table #t(i int)
      set nocount off
      insert #t
      select @a a union all select @b
      set nocount on
      drop table #t", new {a=1, b=2 });
    Assert.Equal(2, count);

    Execute a Command multiple times

    The same signature also allows you to conveniently and efficiently execute a command multiple times (for example to bulk-load data)

    Example usage:

    var count = connection.Execute(@"insert MyTable(colA, colB) values (@a, @b)",
        new[] { new { a=1, b=1 }, new { a=2, b=2 }, new { a=3, b=3 } }
      );
    Assert.Equal(3, count); // 3 rows inserted: "1,1", "2,2" and "3,3"

    This works for any parameter that implements IEnumerable for some T.

    Performance

    A key feature of Dapper is performance. The following metrics show how long it takes to execute a SELECT statement against a DB (in various config, each labeled) and map the data returned to objects.

    The benchmarks can be found in Dapper.Tests.Performance (contributions welcome!) and can be run once compiled via:

    Dapper.Tests.Performance.exe -f * --join
    

    Output from the latest run is:

    BenchmarkDotNet=v0.11.1, OS=Windows 10.0.17134.254 (1803/April2018Update/Redstone4)
    Intel Core i7-7700HQ CPU 2.80GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
    Frequency=2742188 Hz, Resolution=364.6723 ns, Timer=TSC
      [Host]   : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3163.0
      ShortRun : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3163.0
    
    ORMMethodReturnMeanGen 0Gen 1Gen 2Allocated
    LINQ to DB 'First (Compiled)' Post 78.75 us 0.7500 - - 2.66 KB
    LINQ to DB Query<T> Post 80.38 us 2.1250 - - 6.87 KB
    Hand Coded SqlCommand Post 87.16 us 2.5000 1.0000 0.2500 12.24 KB
    Dapper QueryFirstOrDefault<dynamic> dynamic 87.80 us 4.3750 - - 13.5 KB
    Belgrade ExecuteReader Post 87.85 us 3.6250 0.7500 - 11.27 KB
    Dapper QueryFirstOrDefault<T> Post 91.51 us 2.8750 0.8750 0.2500 13.46 KB
    Hand Coded DataTable dynamic 91.74 us 2.2500 0.6250 - 12.45 KB
    Dapper 'Query<T> (buffered)' Post 94.05 us 2.8750 0.8750 0.2500 13.79 KB
    Dapper 'Query<dynamic> (buffered)' dynamic 95.25 us 2.5000 1.0000 0.2500 13.87 KB
    Massive 'Query (dynamic)' dynamic 96.18 us 3.2500 0.8750 0.3750 14.19 KB
    PetaPoco 'Fetch<T> (Fast)' Post 96.57 us 2.7500 0.8750 0.2500 13.65 KB
    PetaPoco Fetch<T> Post 97.62 us 2.8750 0.8750 0.2500 14.59 KB
    Dapper 'Contrib Get<T>' Post 98.85 us 2.8750 1.0000 0.2500 14.45 KB
    ServiceStack SingleById<T> Post 102.39 us 3.1250 0.8750 0.3750 17.52 KB
    LINQ to DB First Post 103.54 us 1.7500 - - 5.51 KB
    Susanoo 'Execute<T> (Static)' Post 105.07 us 2.8750 0.8750 0.2500 14.98 KB
    Dashing Get Post 105.80 us 3.1250 0.8750 0.3750 14.82 KB
    Susanoo 'Execut<dynamic> (Static)' dynamic 109.26 us 3.1250 0.8750 0.2500 14.97 KB
    LINQ to SQL 'First (Compiled)' Post 114.62 us 3.1250 - - 9.82 KB
    Dapper 'Query<T> (unbuffered)' Post 119.72 us 3.1250 0.8750 0.2500 13.83 KB
    Susanoo 'Execute<dynamic> (Cache)' dynamic 124.02 us 3.6250 1.0000 0.5000 20.4 KB
    Susanoo 'Execute<T> (Cache)' Post 126.92 us 4.2500 1.0000 0.5000 20.88 KB
    Dapper 'Query<dynamic> (unbuffered)' dynamic 139.89 us 2.5000 1.0000 0.2500 13.87 KB
    EF 6 SqlQuery Post 143.86 us 5.2500 0.7500 - 27.86 KB
    EF Core 'First (Compiled)' Post 148.42 us 5.0000 - - 16.08 KB
    NHibernate Get<T> Post 196.88 us 5.7500 1.0000 - 32.5 KB
    EF Core First Post 197.91 us 6.5000 - - 20.25 KB
    NHibernate HQL Post 207.84 us 6.0000 0.7500 - 35 KB
    EF Core 'First (No Tracking)' Post 213.58 us 4.2500 0.7500 0.2500 21.36 KB
    EF Core SqlQuery Post 247.25 us 6.5000 - - 20.56 KB
    EF 6 First Post 247.53 us 15.5000 - - 48.29 KB
    NHibernate Criteria Post 253.30 us 13.2500 1.2500 0.2500 65.32 KB
    EF 6 'First (No Tracking)' Post 265.80 us 10.5000 1.0000 - 55.09 KB
    LINQ to SQL ExecuteQuery Post 284.74 us 7.0000 1.0000 0.5000 42.33 KB
    NHibernate SQL Post 313.85 us 26.5000 1.0000 - 101.01 KB
    LINQ to SQL First Post 968.14 us 4.0000 1.0000 - 14.68 KB
    NHibernate LINQ Post 1,062.16 us 11.0000 2.0000 - 62.37 KB

    Feel free to submit patches that include other ORMs - when running benchmarks, be sure to compile in Release and not attach a debugger (Ctrl+F5).

    Alternatively, you might prefer Frans Bouma's RawDataAccessBencher test suite or OrmBenchmark.

    Parameterized queries

    Parameters are passed in as anonymous classes. This allow you to name your parameters easily and gives you the ability to simply cut-and-paste SQL snippets and run them in your db platform's Query analyzer.

    new {A = 1, B = "b"} // A will be mapped to the param @A, B to the param @B

    List Support

    Dapper allows you to pass in IEnumerable<int> and will automatically parameterize your query.

    For example:

    connection.Query<int>("select * from (select 1 as Id union all select 2 union all select 3) as X where Id in @Ids", new { Ids = new int[] { 1, 2, 3 } });

    Will be translated to:

    select * from (select 1 as Id union all select 2 union all select 3) as X where Id in (@Ids1, @Ids2, @Ids3)" // @Ids1 = 1 , @Ids2 = 2 , @Ids2 = 3

    Literal replacements

    Dapper supports literal replacements for bool and numeric types.

    connection.Query("select * from User where UserTypeId = {=Admin}", new { UserTypeId.Admin }));

    The literal replacement is not sent as a parameter; this allows better plans and filtered index usage but should usually be used sparingly and after testing. This feature is particularly useful when the value being injected is actually a fixed value (for example, a fixed "category id", "status code" or "region" that is specific to the query). For live data where you are considering literals, you might also want to consider and test provider-specific query hints like OPTIMIZE FOR UNKNOWN with regular parameters.

    Buffered vs Unbuffered readers

    Dapper's default behavior is to execute your SQL and buffer the entire reader on return. This is ideal in most cases as it minimizes shared locks in the db and cuts down on db network time.

    However when executing huge queries you may need to minimize memory footprint and only load objects as needed. To do so pass, buffered: false into the Query method.

    Multi Mapping

    Dapper allows you to map a single row to multiple objects. This is a key feature if you want to avoid extraneous querying and eager load associations.

    Example:

    Consider 2 classes: Post and User

    class Post
    {
        public int Id { get; set; }
        public string Title { get; set; }
        public string Content { get; set; }
        public User Owner { get; set; }
    }
    
    class User
    {
        public int Id { get; set; }
        public string Name { get; set; }
    }

    Now let us say that we want to map a query that joins both the posts and the users table. Until now if we needed to combine the result of 2 queries, we'd need a new object to express it but it makes more sense in this case to put the User object inside the Post object.

    This is the use case for multi mapping. You tell dapper that the query returns a Post and a User object and then give it a function describing what you want to do with each of the rows containing both a Post and a User object. In our case, we want to take the user object and put it inside the post object. So we write the function:

    (post, user) => { post.Owner = user; return post; }

    The 3 type arguments to the Query method specify what objects dapper should use to deserialize the row and what is going to be returned. We're going to interpret both rows as a combination of Post and User and we're returning back a Postobject. Hence the type declaration becomes

    <Post, User, Post>

    Everything put together, looks like this:

    var sql =
    @"select * from #Posts p
    left join #Users u on u.Id = p.OwnerId
    Order by p.Id";
    
    var data = connection.Query<Post, User, Post>(sql, (post, user) => { post.Owner = user; return post;});
    var post = data.First();
    
    Assert.Equal("Sams Post1", post.Content);
    Assert.Equal(1, post.Id);
    Assert.Equal("Sam", post.Owner.Name);
    Assert.Equal(99, post.Owner.Id);

    Dapper is able to split the returned row by making an assumption that your Id columns are named Id or id. If your primary key is different or you would like to split the row at a point other than Id, use the optional splitOn parameter.

    Multiple Results

    Dapper allows you to process multiple result grids in a single query.

    Example:

    var sql =
    @"
    select * from Customers where CustomerId = @id
    select * from Orders where CustomerId = @id
    select * from Returns where CustomerId = @id";
    
    using (var multi = connection.QueryMultiple(sql, new {id=selectedId}))
    {
       var customer = multi.Read<Customer>().Single();
       var orders = multi.Read<Order>().ToList();
       var returns = multi.Read<Return>().ToList();
       ...
    }

    Stored Procedures

    Dapper fully supports stored procs:

    var user = cnn.Query<User>("spGetUser", new {Id = 1},
            commandType: CommandType.StoredProcedure).SingleOrDefault();

    If you want something more fancy, you can do:

    var p = new DynamicParameters();
    p.Add("@a", 11);
    p.Add("@b", dbType: DbType.Int32, direction: ParameterDirection.Output);
    p.Add("@c", dbType: DbType.Int32, direction: ParameterDirection.ReturnValue);
    
    cnn.Execute("spMagicProc", p, commandType: CommandType.StoredProcedure);
    
    int b = p.Get<int>("@b");
    int c = p.Get<int>("@c");

    Ansi Strings and varchar

    Dapper supports varchar params, if you are executing a where clause on a varchar column using a param be sure to pass it in this way:

    Query<Thing>("select * from Thing where Name = @Name", new {Name = new DbString { Value = "abcde", IsFixedLength = true, Length = 10, IsAnsi = true });

    On SQL Server it is crucial to use the unicode when querying unicode and ANSI when querying non unicode.

    Type Switching Per Row

    Usually you'll want to treat all rows from a given table as the same data type. However, there are some circumstances where it's useful to be able to parse different rows as different data types. This is where IDataReader.GetRowParser comes in handy.

    Imagine you have a database table named "Shapes" with the columns: IdType, and Data, and you want to parse its rows into CircleSquare, or Triangle objects based on the value of the Type column.

    var shapes = new List<IShape>();
    using (var reader = connection.ExecuteReader("select * from Shapes"))
    {
        // Generate a row parser for each type you expect.
        // The generic type <IShape> is what the parser will return.
        // The argument (typeof(*)) is the concrete type to parse.
        var circleParser = reader.GetRowParser<IShape>(typeof(Circle));
        var squareParser = reader.GetRowParser<IShape>(typeof(Square));
        var triangleParser = reader.GetRowParser<IShape>(typeof(Triangle));
    
        var typeColumnIndex = reader.GetOrdinal("Type");
    
        while (reader.Read())
        {
            IShape shape;
            var type = (ShapeType)reader.GetInt32(typeColumnIndex);
            switch (type)
            {
                case ShapeType.Circle:
                	shape = circleParser(reader);
                	break;
                case ShapeType.Square:
                	shape = squareParser(reader);
                	break;
                case ShapeType.Triangle:
                	shape = triangleParser(reader);
                	break;
                default:
                	throw new NotImplementedException();
            }
    
          	shapes.Add(shape);
        }
    }

    User Defined Variables in MySQL

    In order to use Non-parameter SQL variables with MySql Connector, you have to add the following option to your connection string:

    Allow User Variables=True

    Make sure you don't provide Dapper with a property to map.

    Limitations and caveats

    Dapper caches information about every query it runs, this allows it to materialize objects quickly and process parameters quickly. The current implementation caches this information in a ConcurrentDictionary object. Statements that are only used once are routinely flushed from this cache. Still, if you are generating SQL strings on the fly without using parameters it is possible you may hit memory issues.

    Dapper's simplicity means that many feature that ORMs ship with are stripped out. It worries about the 95% scenario, and gives you the tools you need most of the time. It doesn't attempt to solve every problem.

    Will Dapper work with my DB provider?

    Dapper has no DB specific implementation details, it works across all .NET ADO providers including SQLite, SQL CE, Firebird, Oracle, MySQL, PostgreSQL and SQL Server.

    Do you have a comprehensive list of examples?

    Dapper has a comprehensive test suite in the test project.

    Who is using this?

    Dapper is in production use at Stack Overflow.

  • 相关阅读:
    访问修饰符、封装、继承
    面向对象与类
    内置对象
    三级联动 控件及JS简单使用
    asp。net简单的登录(不完整)
    asp。net:html的表单元素:
    ASP.Net简介及IIS服务器及Repeater
    用户控件
    登陆,激活,权限
    timer控件,简单通讯
  • 原文地址:https://www.cnblogs.com/Jeely/p/11357643.html
Copyright © 2011-2022 走看看