zoukankan      html  css  js  c++  java
  • [BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】

    题目链接: BZOJ - 1502

    题目分析

    这是我做的第一道 Simpson 积分的题目。Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl...fr 的方法。自适应 Simpson 的自适应指的是,如果分成左右两端分别 Simpson 的和与对整段 Simpson 的差值不超过一个 Eps,那么就接受这个值,否则递归下去求两段的 Simpson 值。

    代码

     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 #include <algorithm>
     7 
     8 using namespace std;
     9 
    10 typedef double LF;
    11 
    12 const LF Eps = 1e-8;
    13 
    14 inline LF gmin(LF a, LF b) {return a < b ? a : b;}
    15 inline LF gmax(LF a, LF b) {return a > b ? a : b;}
    16 inline LF Sqr(LF x) {return x * x;}
    17 
    18 const int MaxN = 500 + 5;
    19 
    20 int n;
    21 
    22 LF Alpha, talpha, Ht, Lp, Rp, Ans;
    23 LF A[MaxN], P[MaxN], Rad[MaxN], Ls[MaxN], Rs[MaxN], Lh[MaxN], Rh[MaxN];
    24 
    25 inline LF f(LF x)
    26 {
    27     LF ret = 0.0;
    28     for (int i = 1; i <= n; ++i)
    29     {
    30         if (fabs(x - P[i]) < Rad[i]) ret = gmax(ret, sqrt(Sqr(Rad[i]) - Sqr(x - P[i]))); 
    31         if (x > Ls[i] && x < Rs[i]) ret = gmax(ret, Lh[i] + (Rh[i] - Lh[i]) * (x - Ls[i]) / (Rs[i] - Ls[i]));
    32     }
    33     return ret;
    34 }
    35 
    36 inline LF Simpson(LF l, LF r, LF fl, LF fmid, LF fr)
    37 {
    38     return (fl + fmid * 4.0 + fr) / 6.0 * (r - l);
    39 }
    40 
    41 LF RSimpson(LF l, LF r, LF fl, LF fmid, LF fr)
    42 {
    43     LF mid, p, q, x, y, z;
    44     mid = (l + r) / 2.0;
    45     p = f((l + mid) / 2.0);
    46     q = f((mid + r) / 2.0);
    47     x = Simpson(l, r, fl, fmid, fr);
    48     y = Simpson(l, mid, fl, p, fmid);
    49     z = Simpson(mid, r, fmid, q, fr);
    50     if (fabs(x - y - z) < Eps) return y + z;
    51     else return RSimpson(l, mid, fl, p, fmid) + RSimpson(mid, r, fmid, q, fr);
    52 }
    53 
    54 int main()
    55 {
    56     scanf("%d%lf", &n, &Alpha);
    57     talpha = tan(Alpha);
    58     Ht = 0.0;
    59     for (int i = 1; i <= n + 1; ++i)
    60     {
    61         scanf("%lf", &A[i]);
    62         Ht += A[i];
    63         P[i] = Ht / talpha;
    64     }
    65     Lp = P[1]; Rp = P[n + 1];
    66     for (int i = 1; i <= n; ++i)
    67     {
    68         scanf("%lf", &Rad[i]);
    69         Lp = gmin(Lp, P[i] - Rad[i]);
    70         Rp = gmax(Rp, P[i] + Rad[i]);
    71     }
    72     Rad[n + 1] = 0.0;
    73     for (int i = 1; i <= n; ++i)
    74     {
    75         if (P[i + 1] - P[i] > fabs(Rad[i + 1] - Rad[i]))
    76         {
    77             Ls[i] = P[i] + Rad[i] * (Rad[i] - Rad[i + 1]) / (P[i + 1] - P[i]);
    78             Rs[i] = P[i + 1] + Rad[i + 1] * (Rad[i] - Rad[i + 1]) / (P[i + 1] - P[i]);
    79             Lh[i] = sqrt(Sqr(Rad[i]) - Sqr(Ls[i] - P[i]));
    80             Rh[i] = sqrt(Sqr(Rad[i + 1]) - Sqr(Rs[i] - P[i + 1]));
    81         }
    82         else 
    83         {
    84             Ls[i] = -1;
    85             Rs[i] = -1;
    86         }
    87     }
    88     Ans = RSimpson(Lp, Rp, f(Lp), f((Lp + Rp) / 2.0), f(Rp)) * 2;
    89     printf("%.2lf
    ", Ans);
    90     return 0;
    91 }
  • 相关阅读:
    Ubuntu下MySQL
    submit踩的坑
    转发,重定向以及区别和简单的session对象(转)
    Markdown链接打开新页面而非本页面跳转,补:target属性
    登录失败使用session传数据
    git安装连接码云提交
    Markdown的超链接由新窗口打开
    GitHub搜索相关项目
    mysql安装
    jdk的安装和配置
  • 原文地址:https://www.cnblogs.com/JoeFan/p/4386066.html
Copyright © 2011-2022 走看看