zoukankan      html  css  js  c++  java
  • HDU 4773 Problem of Apollonius——圆反演

    题面

      HDU4773

    解析

        大概是圆反演的模板吧。

      以点$P(x3, y3)$为反演中心,任意长为反演半径,将两个已知圆反演,设反演后的圆为$A'$, $B'$,所求圆反演后为一条直线,根据题目中的要求,该直线为两圆的外公切线。因此我们只需要求出两圆的外公切线即可。

      然后会发现WA了,因为题目中还有一个要求,所求圆要外切于两圆,即反演变换后反演中心$P$和$A'$的圆心要在同侧。

      还有一个我一开始做错了的地方,原来的圆心$O$反演后就不是新的圆心了!!!可以连接$PO$,求其与圆的两个交点,两个交点的反演点中点才是新的圆心。

     代码:

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    using namespace std;
    const double eps = 1e-11, Pi = 3.14159265358979323;
    
    int T, cnt, num;
    double R;
    
    struct node{
        double fir, sec;
        node(){}
        node(double x, double y) {
            fir = x;
            sec = y;
        }
    }p, c[5], d[5];
    
    node operator + (node x, node y)
    {
        return node(x.fir + y.fir, x.sec + y.sec);
    }
    
    node operator - (node x, node y)
    {
        return node(x.fir - y.fir, x.sec - y.sec);
    }
    
    node operator * (node x, double y)
    {
        return node(x.fir * y, x.sec * y);
    }
    
    node operator / (node x, double y)
    {
        return node(x.fir / y, x.sec / y);
    }
    
    //Rotate vector counterclockwise by alpha
    node rotate(node x, double y)//rad
    {
        return node(x.fir * cos(y) - x.sec * sin(y), x.fir * sin(y) + x.sec * cos(y));
    }
    
    //Cross product
    double crp(node x, node y)
    {
        return x.fir * y.sec - x.sec * y.fir;
    }
    
    //Dot product
    double dtp(node x, node y)
    {
        return x.fir * y.fir + x.sec * y.sec;
    }
    
    //Distance
    double dist(node x)
    {
        return sqrt(dtp(x, x));
    }
    
    //Find the intersection of two straight lines
    //x, y are the vector starting points
    //u, v are the direction vectors
    node itpt(node x, node u, node y, node v)
    {
        node t = x - y;
        double rat = crp(v, t) / crp(u, v);
        return x + u * rat;
    }
    
    struct circ{
        node o;
        double r;
    }a, b, aa, bb, ans[5];
    
    //Find the common tangent of two circles
    void tagt(circ x, circ y)
    {
        if(x.r < y.r)    swap(x, y);
        double len = dist(x.o - y.o);
    
        //External common tangent
        double alp = acos((x.r - y.r) / len);
        node tmp = y.o - x.o, t = rotate(tmp, alp);
        c[++cnt] = x.o + t / len * x.r;
        tmp = x.o - y.o; t = rotate(tmp, Pi + alp);
        d[cnt] = y.o + t / len * y.r;
        tmp = y.o - x.o; t = rotate(tmp, 2 * Pi - alp);
        c[++cnt] = x.o + t / len * x.r;
        tmp = x.o - y.o; t = rotate(tmp, Pi - alp);
        d[cnt] = y.o + t / len * y.r;
    
        //Internal common tangent
        /*alp = acos((x.r + y.r) / len);
        tmp = y.o - x.o; t = rotate(tmp, alp);
        c[++cnt] = x.o + t / len * x.r;
        tmp = x.o - y.o; t = rotate(tmp, alp);
        d[cnt] = y.o + t / len * y.r;
        tmp = y.o - x.o; t = rotate(tmp, 2 * Pi - alp);
        c[++cnt] = x.o + t / len * x.r;
        tmp = x.o - y.o; t = rotate(tmp, 2 * Pi - alp);
        d[cnt] = y.o + t / len * y.r;*/
    }
    
    int check(double x)
    {
        return (x > eps) - (x < -eps);
    }
    
    void out(double x)
    {
        printf("%.8f ", fabs(x) < 0.000000005? 0: x);
    }
    
    int main()
    {
        scanf("%d", &T);
        R = 1.0;
        double len1, len2;
        node tmp, t;
        while(T --)
        {
            scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &a.o.fir, &a.o.sec, &a.r, &b.o.fir, &b.o.sec, &b.r, &p.fir, &p.sec);
            len1 = dist(a.o - p);
            tmp = p + (a.o - p) / len1 * (len1 - a.r);
            len2 = dist(tmp - p);
            tmp = p + (tmp - p) / len2 * (R / len2);
            t = p + (a.o - p) / len1 * (len1 + a.r);
            len2 = dist(t - p);
            t = p + (t - p) / len2 * (R / len2);
            aa.o = (tmp + t) / 2;
            aa.r = dist(aa.o - tmp);
    
            len1 = dist(b.o - p);
            tmp = p + (b.o - p) / len1 * (len1 - b.r);
            len2 = dist(tmp - p);
            tmp = p + (tmp - p) / len2 * (R / len2);
            t = p + (b.o - p) / len1 * (len1 + b.r);
            len2 = dist(t - p);
            t = p + (t - p) / len2 * (R / len2);
            bb.o = (tmp + t) / 2;
            bb.r = dist(bb.o - tmp);
    
    
            cnt = num = 0;
            tagt(aa, bb);    
            for(int i = 1; i <= cnt; ++i)
            {
                if(fabs(crp(c[i] - p, d[i] - p)) < eps || check(crp(d[i] - c[i], p - c[i])) !=  check(crp(d[i] - c[i], aa.o - c[i])))    continue;
                ++ num;
                tmp = c[i] - d[i];
                tmp = rotate(tmp, Pi / 2);
                tmp = itpt(p, tmp, d[i], c[i] - d[i]);
                len1 = dist(tmp - p);
                tmp = p + (tmp - p) / len1 * (R / len1);
                ans[num].o = (p + tmp) / 2;
                ans[num].r = dist(ans[num].o - p);
            }    
            printf("%d
    ", num);
            for(int i = 1; i <= num; ++i)
            {
                out(ans[i].o.fir);
                out(ans[i].o.sec);
                printf("%.8f
    ", ans[i].r);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    多个装饰器装饰一个函数
    DRF 里面DestroyAPIView实例
    ERROR: Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-install-e7q1vcuk/mysqlclient/解决办法!
    python3 协程爬取两张妹子图
    python3 协程简单运用爬取两张妹子图
    gevent 简单运用
    D
    C
    B
    javascript cookie
  • 原文地址:https://www.cnblogs.com/Joker-Yza/p/12227895.html
Copyright © 2011-2022 走看看