求在模 (10^9+9) 的意义下 (n) 在斐波那契数列中出现的最小位置,无解输出 (-1)
(n<10^9+9)
由于 (sqrt5) 在模 (10^9+9) 的意义下的二次剩余为 (383008016) ,因此可以将 (sqrt5) 带入斐波那契数列的通项公式
令 (y=frac{1+sqrt5}{2})
即求最小的 (x) 满足 $$frac{yx-(frac{-1}{y})x}{sqrt5}equiv npmod {10^9+9}$$
化一下式子,得到 $$yx+(-1){x+1}frac{1}{y^x}equivsqrt5npmod {10^9+9}$$
令 (t=y^x) ,原式可以看作为一个二元一次方程 (t^2-sqrt5nt+(-1)^{n+1}=0)
于是 分类讨论 (n) 的奇偶,暴力带入求根公式, (Delta) 用二次剩余计算,即可求出 (t)
现在的问题就变成了求 (y^xequiv tpmod{10^9+9}) ,BSGS 即可
时间复杂度 (O(sqrt nlog n))
代码
#include <bits/stdc++.h>
using namespace std;
const int P = 1e9 + 9, inv_2 = 500000005, sqrt_5 = 383008016;
int N, omg;
inline int inc(int x, int y) {
return x + y < P ? x + y : x + y - P;
}
struct domain {
int x, y;
domain() {}
domain(int _x, int _y) :
x(_x), y(_y) {}
inline domain operator + (const domain &o) const {
return domain(inc(x, o.x), inc(y, o.y));
}
inline domain operator * (const domain &o) const {
return domain((1ll * x * o.x + 1ll * y * o.y % P * omg) % P, (1ll * x * o.y + 1ll * y * o.x) % P);
}
};
inline int rnd() {
return (rand() << 15 | rand()) % P;
}
inline int qp(int a, int k) {
int res = 1;
for (; k; k >>= 1, a = 1ll * a * a % P) {
if (k & 1) res = 1ll * res * a % P;
}
return res;
}
inline domain qp(domain a, int k) {
domain res = domain(1, 0);
for (; k; k >>= 1, a = a * a) {
if (k & 1) res = res * a;
}
return res;
}
int Cipolla(int n) {
int k = (P - 1) >> 1;
if (qp(n, k) == -1) {
return -1;
}
int a = rnd();
while (qp((1ll * a * a - n + P) % P, k) == 1) {
a = rnd();
}
omg = (1ll * a * a - n + P) % P;
return qp(domain(a, 1), k + 1).x;
}
int BSGS(int a, int b) {
if (!a && b) return -1;
map <int, int> s;
int sz = sqrt(P), inv_a = qp(a, P - 2);
for (int i = 0, cur = 1; i <= sz; i++) {
s.insert(make_pair(1ll * b * cur % P, i)), cur = 1ll * cur * inv_a % P;
}
int pw = qp(a, sz);
map <int, int> :: iterator it;
for (int i = 0, cur = 1; i <= sz; i++, cur = 1ll * cur * pw % P) {
if ((it = s.find(cur)) != s.end()) {
return i * sz + (it -> second);
}
}
return -1;
}
signed main() {
srand(time(0));
scanf("%d", &N);
int x = 1ll * N * sqrt_5 % P;
int y = 1ll * (sqrt_5 + 1) * inv_2 % P;
int delta, tmp, res, ans = INT_MAX;
delta = Cipolla((1ll * x * x - 4 + P) % P);
if (~delta) {
tmp = 1ll * (x + delta) * inv_2 % P, res = BSGS(y, tmp);
if (~res && res & 1) ans = min(ans, res);
tmp = 1ll * (x - delta + P) * inv_2 % P, res = BSGS(y, tmp);
if (~res && res & 1) ans = min(ans, res);
}
delta = Cipolla((1ll * x * x + 4) % P);
if (~delta) {
tmp = 1ll * (x + delta) * inv_2 % P, res = BSGS(y, tmp);
if (~res && ~res & 1) ans = min(ans, res);
tmp = 1ll * (x - delta + P) * inv_2 % P, res = BSGS(y, tmp);
if (~res && ~res & 1) ans = min(ans, res);
}
printf("%d", ans < INT_MAX ? ans : -1);
return 0;
}