zoukankan      html  css  js  c++  java
  • hdu5780 gcd

    hdu5780 gcd

    给定 (n, x) ,求 $$displaystylesum_{i=1}nsum_{j=1}ngcd(xi-1, xj-1)pmod{10^9+7}$$

    (T) 组询问

    (Tleq300, n, xleq10^7)

    数论,数论分块


    首先有一个公式: (gcd(x^a-1, x^b-1)=x^{gcd(a, b)}-1)

    于是

    [egin{aligned}displaystylesum_{i=1}^nsum_{j=1}^ngcd(x^i-1, x^j-1)&=displaystylesum_{i=1}^nsum_{j=1}^nx^{gcd(i, j)-1}\&=displaystylesum_{i=1}^nsum_{j=1}^nsum_{d=1}^n{x^{d[gcd(i, j)=d]}-1}\&=displaystylesum_{i=1}^nsum_{j=1}^nsum_{d=1}^n{[gcd(i, j)=d](x^d-1)}\&=displaystylesum_{d=1}^n(x^d-1)sum_{i=1}^{frac{n}{d}}sum_{j=1}^{frac{n}{d}}{[gcd(i, j)=1]}\&=displaystylesum_{d=1}^n(x^d-1) imes(2 imes(sum_{i=1}^{frac{n}{d}}varphi(i))-1)end{aligned} ]

    注意到第二项的 (frac{n}{d}) ,可以数论分块,第一项直接等比数列求和

    需预处理 (displaystylesum_{i=1}^n{varphi(i)}pmod{10^9+7})

    时间复杂度 (O(n+Tsqrt nlog n))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e7 + 10, P = 1e9 + 7;
    int tot, p[maxn], phi[maxn];
    
    inline int inc(int x, int y) {
      return x + y < P ? x + y : x + y - P;
    }
    
    inline int dec(int x, int y) {
      return x - y < 0 ? x - y + P : x - y;
    }
    
    inline int qp(int a, int k) {
      int res = 1;
      for (; k; k >>= 1, a = 1ll * a * a % P) {
        if (k & 1) res = 1ll * res * a % P;
      }
      return res;
    }
    
    void sieve() {
      int N = 1e7;
      for (int i = 2; i <= N; i++) {
        if (!p[i]) p[++tot] = i, phi[i] = i - 1;
        for (int j = 1; j <= tot && i * p[j] <= N; j++) {
          p[i * p[j]] = 1;
          if (i % p[j] == 0) {
            phi[i * p[j]] = phi[i] * p[j]; break;
          }
          phi[i * p[j]] = phi[i] * (p[j] - 1);
        }
      }
      phi[1] = 1;
      for (int i = 2; i <= N; i++) {
        phi[i] = inc(phi[i], phi[i - 1]);
      }
    }
    
    inline int calc(int x, int k) {
      if (x == 1) return k + 1;
      return 1ll * dec(qp(x, k + 1), 1) * qp(x - 1, P - 2) % P;
    }
    
    inline void solve() {
      int n, x, ans = 0;
      scanf("%d %d", &x, &n);
      for (int l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans + 1ll * dec(dec(calc(x, r), calc(x, l - 1)), r - l + 1) * dec(inc(phi[n / l], phi[n / l]), 1)) % P;
      }
      printf("%d
    ", ans);
    }
    
    int main() {
      sieve();
      int Tests;
      scanf("%d", &Tests);
      while (Tests--) solve();
      return 0;
    }
    
  • 相关阅读:
    java它 ------ 图形界面(两)
    使用python+flask让你自己api(教程源代码)
    hadoop工作平台梳理
    互斥锁设计,有效的避免死锁
    Cache基础知识OR1200在ICache一个简短的引论
    工作日志2014-08-04
    POSIX 螺纹具体解释(1-概要)
    3.1、Eclipse
    vim cheat sheet
    C++ 学习资料搜寻与学习(第一期)(未完待续)
  • 原文地址:https://www.cnblogs.com/Juanzhang/p/11048108.html
Copyright © 2011-2022 走看看