zoukankan      html  css  js  c++  java
  • 第二次作业:卷积神经网络 part 2

    Part Ⅰ 问题总结

    Part Ⅱ 生成式对抗网络

    2.1 用途

    • 旧图像修复
    • 图像超像素
    • 人脸生成
    • 人脸定制
    • 文本生成图片
    • 字体变换
    • 风格变换
    • 帧预测

    2.2 GAN

    生成式对抗网络的目的是训练一个生成模型,生成我们想要的数据。(低维向量-》生成模型-》高维数据(图片、文本、语音))

    Part Ⅲ 代码练习

    3.1 生成式对抗网络

    定义生成器和判别器

    z_dim = 32
    hidden_dim = 128
    
    # 定义生成器
    net_G = nn.Sequential(
                nn.Linear(z_dim,hidden_dim),
                nn.ReLU(), 
                nn.Linear(hidden_dim, 2))
    
    # 定义判别器
    net_D = nn.Sequential(
                nn.Linear(2,hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim,1),
                nn.Sigmoid())
    
    # 网络放到 GPU 上
    net_G = net_G.to(device)
    net_D = net_D.to(device)
    
    # 定义网络的优化器
    optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.0001)
    optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.0001)
    

    开始训练

    batch_size = 50
    nb_epochs = 1000
    
    loss_D_epoch = []
    loss_G_epoch = []
    
    for e in range(nb_epochs):
        np.random.shuffle(X)
        real_samples = torch.from_numpy(X).type(torch.FloatTensor)
        loss_G = 0
        loss_D = 0
        for t, real_batch in enumerate(real_samples.split(batch_size)):
            # 固定生成器G,改进判别器D
            # 使用normal_()函数生成一组随机噪声,输入G得到一组样本
            z = torch.empty(batch_size,z_dim).normal_().to(device)
            fake_batch = net_G(z)
            # 将真、假样本分别输入判别器,得到结果
            D_scores_on_real = net_D(real_batch.to(device))
            D_scores_on_fake = net_D(fake_batch)
            # 优化过程中,假样本的score会越来越小,真样本的score会越来越大,下面 loss 的定义刚好符合这一规律,
            # 要保证loss越来越小,真样本的score前面要加负号
            # 要保证loss越来越小,假样本的score前面是正号(负负得正)
            loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real))
            # 梯度清零
            optimizer_D.zero_grad()
            # 反向传播优化
            loss.backward()
            # 更新全部参数
            optimizer_D.step()
            loss_D += loss
                        
            # 固定判别器,改进生成器
            # 生成一组随机噪声,输入生成器得到一组假样本
            z = torch.empty(batch_size,z_dim).normal_().to(device)
            fake_batch = net_G(z)
            # 假样本输入判别器得到 score
            D_scores_on_fake = net_D(fake_batch)
            # 我们希望假样本能够骗过生成器,得到较高的分数,下面的 loss 定义也符合这一规律
            # 要保证 loss 越来越小,假样本的前面要加负号
            loss = -torch.mean(torch.log(D_scores_on_fake))
            optimizer_G.zero_grad()
            loss.backward()
            optimizer_G.step()
            loss_G += loss
        
        if e % 50 ==0:
            print(f'
     Epoch {e} , D loss: {loss_D}, G loss: {loss_G}') 
    
        loss_D_epoch.append(loss_D)
        loss_G_epoch.append(loss_G)
    

    展示loss的变化情况:

    plt.plot(loss_D_epoch)
    plt.plot(loss_G_epoch)
    


    可以发现直到训练结束,模型都没有收敛。
    利用生成器生成一组假样本,观察是否符合两个半月形状的数据分布:

    z = torch.empty(n_samples,z_dim).normal_().to(device)
    fake_samples = net_G(z)
    fake_data = fake_samples.cpu().data.numpy()
    
    fig, ax = plt.subplots(1, 1, facecolor='#4B6EA9')
    all_data = np.concatenate((X,fake_data),axis=0)
    Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
    plot_data(ax, all_data, Y2)
    plt.show()
    


    其中,白色的是原来的真实样本,黑色的点是生成器生成的样本。效果并不好!
    进行改进:把学习率修改为 0.001,batch_size改大到250,在运行一次

    # 定义网络的优化器
    optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.001)
    optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.001)
    
    batch_size = 250
    
    loss_D_epoch = []
    loss_G_epoch = []
    
    for e in range(nb_epochs):
        np.random.shuffle(X)
        real_samples = torch.from_numpy(X).type(torch.FloatTensor)
        loss_G = 0
        loss_D = 0
        for t, real_batch in enumerate(real_samples.split(batch_size)):
            # 固定生成器G,改进判别器D
            # 使用normal_()函数生成一组随机噪声,输入G得到一组样本
            z = torch.empty(batch_size,z_dim).normal_().to(device)
            fake_batch = net_G(z)
            # 将真、假样本分别输入判别器,得到结果
            D_scores_on_real = net_D(real_batch.to(device))
            D_scores_on_fake = net_D(fake_batch)
            # 优化过程中,假样本的score会越来越小,真样本的score会越来越大,下面 loss 的定义刚好符合这一规律,
            # 要保证loss越来越小,真样本的score前面要加负号
            # 要保证loss越来越小,假样本的score前面是正号(负负得正)
            loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real))
            # 梯度清零
            optimizer_D.zero_grad()
            # 反向传播优化
            loss.backward()
            # 更新全部参数
            optimizer_D.step()
            loss_D += loss
                        
            # 固定判别器,改进生成器
            # 生成一组随机噪声,输入生成器得到一组假样本
            z = torch.empty(batch_size,z_dim).normal_().to(device)
            fake_batch = net_G(z)
            # 假样本输入判别器得到 score
            D_scores_on_fake = net_D(fake_batch)
            # 我们希望假样本能够骗过生成器,得到较高的分数,下面的 loss 定义也符合这一规律
            # 要保证 loss 越来越小,假样本的前面要加负号
            loss = -torch.mean(torch.log(D_scores_on_fake))
            optimizer_G.zero_grad()
            loss.backward()
            optimizer_G.step()
            loss_G += loss
        
        if e % 50 ==0:
            print(f'
     Epoch {e} , D loss: {loss_D}, G loss: {loss_G}') 
    
        loss_D_epoch.append(loss_D)
        loss_G_epoch.append(loss_G)
    

    展示结果

    z = torch.empty(n_samples,z_dim).normal_().to(device)
    fake_samples = net_G(z)
    fake_data = fake_samples.cpu().data.numpy()
    
    fig, ax = plt.subplots(1, 1, facecolor='#4B6EA9')
    all_data = np.concatenate((X,fake_data),axis=0)
    Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
    plot_data(ax, all_data, Y2)
    plt.show()
    


    随着batch size的增大,loss的降低,效果明显改善
    下面生成更多的样本观察一下

    z = torch.empty(10*n_samples,z_dim).normal_().to(device)
    fake_samples = net_G(z)
    fake_data = fake_samples.cpu().data.numpy()
    fig, ax = plt.subplots(1, 1, facecolor='#4B6EA9')
    all_data = np.concatenate((X,fake_data),axis=0)
    Y2 = np.concatenate((np.ones(n_samples),np.zeros(10*n_samples)))
    plot_data(ax, all_data, Y2)
    plt.show();
    

    3.2 CGAN

    首先下载数据集

    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torchvision import datasets, transforms
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 基本参数
    z_dim = 100
    batch_size = 128
    learning_rate = 0.0002
    total_epochs = 30
    
    # 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    # 加载MNIST数据集
    dataloader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
            transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
            ), batch_size, shuffle=False, drop_last=True)
    

    实现CGAN,分别是生成器和判别器的网络结构。

    class Discriminator(nn.Module):
    	'''全连接判别器,用于1x28x28的MNIST数据,输出是数据和类别'''
    	def __init__(self):
    		super(Discriminator, self).__init__()
    		self.model = nn.Sequential(
    			  nn.Linear(28*28+10, 512),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(512, 256),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(256, 1),
    			  nn.Sigmoid()
    		)
      
    	def forward(self, x, c):
    		x = x.view(x.size(0), -1)
    		validity = self.model(torch.cat([x, c], -1))
    		return validity
    
    class Generator(nn.Module):
    	'''全连接生成器,用于1x28x28的MNIST数据,输入是噪声和类别'''
    	def __init__(self, z_dim):
    		super(Generator, self).__init__()
    		self.model = nn.Sequential(
    			  nn.Linear(z_dim+10, 128),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(128, 256),
    			  nn.BatchNorm1d(256, 0.8),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(256, 512),
    			  nn.BatchNorm1d(512, 0.8),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(in_features=512, out_features=28*28),
    			  nn.Tanh()
    	 	)
    
    	def forward(self, z, c):
    		x = self.model(torch.cat([z, c], dim=1))
    		x = x.view(-1, 1, 28, 28)
    		return x
    

    定义相关的模型

    # 初始化构建判别器和生成器
    discriminator = Discriminator().to(device)
    generator = Generator(z_dim=z_dim).to(device)
    
    # 初始化二值交叉熵损失
    bce = torch.nn.BCELoss().to(device)
    ones = torch.ones(batch_size).to(device)
    zeros = torch.zeros(batch_size).to(device)
    
    # 初始化优化器,使用Adam优化器
    g_optimizer = optim.Adam(generator.parameters(), lr=learning_rate)
    d_optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate)
    

    开始训练

    # 开始训练,一共训练total_epochs
    for epoch in range(total_epochs):
    
    	# torch.nn.Module.train() 指的是模型启用 BatchNormalization 和 Dropout
    	# torch.nn.Module.eval() 指的是模型不启用 BatchNormalization 和 Dropout
    	# 因此,train()一般在训练时用到, eval() 一般在测试时用到
    	generator = generator.train()
    
    	# 训练一个epoch
    	for i, data in enumerate(dataloader):
    
    		# 加载真实数据
    		real_images, real_labels = data
    		real_images = real_images.to(device)
    		# 把对应的标签转化成 one-hot 类型
    		tmp = torch.FloatTensor(real_labels.size(0), 10).zero_()
    		real_labels = tmp.scatter_(dim=1, index=torch.LongTensor(real_labels.view(-1, 1)), value=1)
    		real_labels = real_labels.to(device)
    
    		# 生成数据
    		# 用正态分布中采样batch_size个随机噪声
    		z = torch.randn([batch_size, z_dim]).to(device)
    		# 生成 batch_size 个 ont-hot 标签
    		c = torch.FloatTensor(batch_size, 10).zero_()
    		c = c.scatter_(dim=1, index=torch.LongTensor(np.random.choice(10, batch_size).reshape([batch_size, 1])), value=1)
    		c = c.to(device)
    		# 生成数据
    		fake_images = generator(z,c)
    
    		# 计算判别器损失,并优化判别器
    		real_loss = bce(discriminator(real_images, real_labels), ones)
    		fake_loss = bce(discriminator(fake_images.detach(), c), zeros)
    		d_loss = real_loss + fake_loss
    
    		d_optimizer.zero_grad()
    		d_loss.backward()
    		d_optimizer.step()
    
    		# 计算生成器损失,并优化生成器
    		g_loss = bce(discriminator(fake_images, c), ones)
    
    		g_optimizer.zero_grad()
    		g_loss.backward()
    		g_optimizer.step()
    
    	# 输出损失
    	print("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, total_epochs, d_loss.item(), g_loss.item()))
    

    下面我们用随机噪声生成一组图像,看看CGAN的效果

    #用于生成效果图
    # 生成100个随机噪声向量
    fixed_z = torch.randn([100, z_dim]).to(device)
    # 生成100个one_hot向量,每类10个
    fixed_c = torch.FloatTensor(100, 10).zero_()
    fixed_c = fixed_c.scatter_(dim=1, index=torch.LongTensor(np.array(np.arange(0, 10).tolist()*10).reshape([100, 1])), value=1)
    fixed_c = fixed_c.to(device)
    
    generator = generator.eval()
    fixed_fake_images = generator(fixed_z, fixed_c)
    
    plt.figure(figsize=(8, 8))
    for j in range(10):
        for i in range(10):
            img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy()
            img = img.reshape([28, 28])
            plt.subplot(10, 10, j*10+i+1)
            plt.imshow(img, 'gray')
    

    3.3 DCGAN

    判别器 和 生成器 的网络结构

    class D_dcgan(nn.Module):
    	'''滑动卷积判别器'''
    	def __init__(self):
    		super(D_dcgan, self).__init__()
    		self.conv = nn.Sequential(
                # 第一个滑动卷积层,不使用BN,LRelu激活函数
                nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=2, padding=1),
                nn.LeakyReLU(0.2, inplace=True),
                # 第二个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(32),
                nn.LeakyReLU(0.2, inplace=True),
                # 第三个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(64),
                nn.LeakyReLU(0.2, inplace=True),
                # 第四个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=1),
                nn.BatchNorm2d(128),
                nn.LeakyReLU(0.2, inplace=True)
            )
    
    		# 全连接层+Sigmoid激活函数
    		self.linear = nn.Sequential(nn.Linear(in_features=128, out_features=1), nn.Sigmoid())
    
    	def forward(self, x):
    		x = self.conv(x)
    		x = x.view(x.size(0), -1)
    		validity = self.linear(x)
    		return validity
    
    class G_dcgan(nn.Module):
    	'''反滑动卷积生成器'''
    
    	def __init__(self, z_dim):
    		super(G_dcgan, self).__init__()
    		self.z_dim = z_dim
    		# 第一层:把输入线性变换成256x4x4的矩阵,并在这个基础上做反卷机操作
    		self.linear = nn.Linear(self.z_dim, 4*4*256)
    		self.model = nn.Sequential(
                # 第二层:bn+relu
                nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=0),
                nn.BatchNorm2d(128),
                nn.ReLU(inplace=True),
                # 第三层:bn+relu
                nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True),
                # 第四层:不使用BN,使用tanh激活函数
                nn.ConvTranspose2d(in_channels=64, out_channels=1, kernel_size=4, stride=2, padding=2),
                nn.Tanh()
            )
    
    	def forward(self, z):
    		# 把随机噪声经过线性变换,resize成256x4x4的大小
    		x = self.linear(z)
    		x = x.view([x.size(0), 256, 4, 4])
    		# 生成图片
    		x = self.model(x)
    		return x
    

    定义相关的模型

    # 构建判别器和生成器
    d_dcgan = D_dcgan().to(device)
    g_dcgan = G_dcgan(z_dim=z_dim).to(device)
    
    def weights_init_normal(m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
        elif classname.find('BatchNorm2d') != -1:
            torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
            torch.nn.init.constant_(m.bias.data, 0.0)
    
    # 使用均值为0,方差为0.02的正态分布初始化神经网络
    d_dcgan.apply(weights_init_normal)
    g_dcgan.apply(weights_init_normal)
    
    # 初始化优化器,使用Adam优化器
    g_dcgan_optim = optim.Adam(g_dcgan.parameters(), lr=learning_rate)
    d_dcgan_optim = optim.Adam(d_dcgan.parameters(), lr=learning_rate)
    
    # 加载MNIST数据集,和之前不同的是,DCGAN输入的图像被 resize 成 32*32 像素
    dcgan_dataloader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
            transform=transforms.Compose([transforms.Resize(32), transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])
            ), batch_size, shuffle=True, drop_last=True)
    

    开始训练模型

    # 开始训练,一共训练 total_epochs
    
    for e in range(total_epochs):
    
    	# 给generator启用 BatchNormalization
    	g_dcgan = g_dcgan.train()
    	# 训练一个epoch
    	for i, data in enumerate(dcgan_dataloader):
    
    		# 加载真实数据,不加载标签
    		real_images, _ = data
    		real_images = real_images.to(device)
    
    		# 用正态分布中采样batch_size个噪声,然后生成对应的图片
    		z = torch.randn([batch_size, z_dim]).to(device)
    		fake_images = g_dcgan(z)
    
    		# 计算判别器损失,并优化判别器
    		real_loss = bce(d_dcgan(real_images), ones)
    		fake_loss = bce(d_dcgan(fake_images.detach()), zeros)
    		d_loss = real_loss + fake_loss
    
    		d_dcgan_optim.zero_grad()
    		d_loss.backward()
    		d_dcgan_optim.step()
    
    		# 计算生成器损失,并优化生成器
    		g_loss = bce(d_dcgan(fake_images), ones)
    
    		g_dcgan_optim.zero_grad()
    		g_loss.backward()
    		g_dcgan_optim.step()
    		
        # 输出损失
    	print ("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (e, total_epochs, d_loss.item(), g_loss.item()))
    

    用一组随机噪声输出图像,看看DCGAN的效果

    #用于生成效果图
    # 生成100个随机噪声向量
    fixed_z = torch.randn([100, z_dim]).to(device)
    g_dcgan = g_dcgan.eval()
    fixed_fake_images = g_dcgan(fixed_z)
    
    plt.figure(figsize=(8, 8))
    for j in range(10):
        for i in range(10):
            img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy()
            img = img.reshape([32, 32])
            plt.subplot(10, 10, j*10+i+1)
            plt.imshow(img, 'gray')
    

  • 相关阅读:
    Flink入门(一)——Apache Flink介绍
    ES入门宝典(详细截图版)
    什么是全文检索
    Hbase入门(五)——客户端(Java,Shell,Thrift,Rest,MR,WebUI)
    Hbase入门(四)——表结构设计-RowKey
    Hbase入门(三)——数据模型
    Hbase入门(二)——安装与配置
    Hbase入门(一)——初识Hbase
    Flink1.9整合Kafka
    ShutdownHook
  • 原文地址:https://www.cnblogs.com/Justing778/p/13644663.html
Copyright © 2011-2022 走看看