1、IO瓶颈
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈
第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
二、分库分表
1、水平分库
概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
结果:
- 每个库的结构都一样;
- 每个库的数据都不一样,没有交集;
- 所有库的并集是全量数据;
2、水平分表
概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
结果:
- 每个表的结构都一样;
- 每个表的数据都不一样,没有交集;
- 所有表的并集是全量数据;
3、垂直分库
概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。结果:
- 每个库的结构都不一样;
- 每个库的数据也不一样,没有交集;
- 所有库的并集是全量数据;
4、垂直分表
概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
结果:
- 每个表的结构都不一样;
- 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
- 所有表的并集是全量数据;
三、分库分表工具
- sharding-sphere:jar,前身是sharding-jdbc;
- TDDL:jar,Taobao Distribute Data Layer;
- Mycat:中间件。