zoukankan      html  css  js  c++  java
  • 聊一聊 ( sin x ) ′ = cos x

    昨天 在 数学吧 看到一个 帖 《我真是无语了,居然有这样的证明,明明是先有x和sinx是等价无穷小》  https://tieba.baidu.com/p/7513639815 

    推导一下    ( sin x ) ′  =  cos x   ,       天辩阮幼台 (陈彼方),   来一个  ?

    因为 圆 的 对称性,   圆周运动  成为了  主要定理 的 发源地 之一  。    圆周运动 中 涉及 到 圆弧 和 各种 弦 、径,    曲直交汇互动  。

    小时候 以为 三角函数 是 三角形 的,    长大了 了解了一些 高等一点 的 数学 (和 物理 ?)   才知道 三角函数 是 圆周运动 的  。

    据说 傅里叶级数  也是 圆周运动  。

    可以 设计一个  转盘 曲轴 连杆 什么的 装置,   输出 机械正弦波 ,  你 在 这里 摇动 把手 转动转盘,   那边  连杆 带动 一个 小球 什么的 运动,   小球 又 带动 一根 绳子,  小球 运动 让 绳子 “抖起来” ,   绳子 抖动 的 波形 就是 正弦波,    这样 就 输出 正弦波 了  。      也可以 把 小球 放在 水 里 ,    用 水波 来 输出 正弦波,  也就是 正弦水波  。

    傅里叶级数 也可以 用 类似 的 装置 来 输出 为   机械波   。

    ( sin x ) ′  =  cos x      是  微积分 大厦  里 的 一个 重要 的   轴承 、支点 、主动力轴 、螺丝钉   。

    通过   ( sin x ) ′  =  cos x    可以知道    ʃ cos x dx = sin x ,   也可以知道   ( cos x ) ′ =  - sin x   和     ʃ sin x dx  =  - cos x    。

    这就知道了   sinx 和 cos x 的 积分,  包括 原函数 和 定积分,     这 可 不得了  。

    积分  是 比较难 推导 的 ,    用 数列和 极限 的 方法 只能 推导出 少数  简单 和 特例 的  积分 。

    你 用   数列和 极限 推导  sin x   的 (定)积分  试试  …… ?

    sin x 的 导数 是 cos x ,   cos x 的 原函数 是 sin x ,   这 很 神奇,  很 巧合,    意料之外,  情理之中  。

    出乎 我 的 意料,    但从 推导过程 上 看, 在 情理 上 又 很容易 的 接受 了 ,    这 大概 就是 圆周运动(圆)  的   对称性  基本性  优美和谐 吧  。

    分式积分 和 自然对数 有关,

    根式积分 和  ( sin x ) ′  =  cos x   有关,

    椭圆积分 可以 用    ( sin x ) ′  =  cos x   变形 和 求出 一些 积分项 的 积分 ,

    二体问题 的 经典解法 全盘 和   ( sin x ) ′  =  cos x    相关 ,

    简单的 匀加速 / 变加速 / 曲线 / 相遇 运动 和    ( sin x ) ′  =  cos x    相关   。

    ( sin x ) ′  =  cos x    为 微积分 的 发展 打开了一道 大门  。

    欧拉公式 和 傅里叶级数 也 发乎  ( sin x ) ′  =  cos x    。

    “欧拉公式 和 傅里叶级数 也 发乎  ( sin x ) ′  =  cos x    。”     这句话 是 我 随便 说 的  。

    我 估计 当初 最早 推导出    ( sin x ) ′  =  cos x    的  数学家 肯定 内心 狂喜 ,     心中 充满了 建设 微积分 大厦 的 憧憬 信心 和 构想  。

  • 相关阅读:
    更换Ubuntu源为国内源的操作记录
    Dockerfile构建容器镜像
    Nginx负载均衡中后端节点服务器健康检查
    Linux系统下CPU使用(load average)梳理
    android:怎么实现一个控件与另一个指定控件左对齐
    Android Studio一直 Fetching Documentation...
    px、pt、ppi、dpi、dp、sp之间的关系
    Android中如何在代码中设置View的宽和高?
    硬中断与软中断的区别!
    Java 日期时间获取和显示
  • 原文地址:https://www.cnblogs.com/KSongKing/p/15200855.html
Copyright © 2011-2022 走看看