zoukankan      html  css  js  c++  java
  • [VJ][暴力枚举]Covered Path

    Covered Path

    Description

    The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2meters per second. We know that this section of the route took exactly t seconds to pass.

    Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

    Input

    The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.

    The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.

    It is guaranteed that there is a way to complete the segment so that:

    • the speed in the first second equals v1,
    • the speed in the last second equals v2,
    • the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.

    Output

    Print the maximum possible length of the path segment in meters.

    Examples

    Input

    5 6
    4 2

    Output

    26

    Input

    10 10
    10 0

    Output

    100

    Note

    In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters.

    In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.

    描述:

    一个小车起始速度为v1,末速度为v2,给出时间t,和最大加速度(-d--d)

    求小车在 t 时间内的最大路程。

    正确解法:

    时间从 t==2 开始枚举,从d— -d开始枚举加速度。

    当满足 现在的速度v 加上加速度 再减去剩余时间*d <=v2 时,此时的加速度就是目前所能加的最大加速度。

    万一小车加速,要保证它在剩余时间内可以减速到 v2

    (第一次见到枚举加速度,要好好记下来)

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<algorithm>
     5 #include<string>
     6 #include<cstring>
     7 using namespace std;    
     8 int b[1000010] = {0};
     9 int main()
    10 {
    11     int v1, v2,t,d,v;
    12     cin >> v1 >> v2 >> t >> d;
    13     long long ans = v1;
    14     v = v1;    t=t-1;
    15     while (t) {
    16         for (int i = d; i >= -d; i--)
    17             if (v + i - (t - 1)*d <= v2)
    18             {
    19                 ans += v + i;
    20                 t--;
    21                 v = v + i;
    22                 break;
    23             }
    24     }
    25     cout << ans << endl;
    26     return 0;
    27 }
    View Code
    No matter how you feel, get up , dress up , show up ,and never give up.
  • 相关阅读:
    决策树
    结巴分词demo
    线性回归分析波士顿房价
    将python的字典格式数据写入excei表中
    ubuntu16.04电脑重启/关机卡死问题记录
    Hadoop 平台搭建
    Linux 常用命令
    灰度共生矩阵
    图像类型
    linux中的一些常用命令
  • 原文地址:https://www.cnblogs.com/Kaike/p/9887163.html
Copyright © 2011-2022 走看看