zoukankan      html  css  js  c++  java
  • 用Python养一只DHT爬虫

    DHT是什么

    • DHT全称叫分布式哈希表(Distributed Hash Table),是一种分布式存储方法。在不需要服务器的情况下,每个客户端负责一个小范围的路由,并负责存储一小部分数据,从而实现整个DHT网络的寻址和存储。
    • 各种博客已经有很多关于DHT介绍,这里就不详细列举了

    加入DHT网络可以做什么

    1. 老司机开车(神秘代码)
    2. P2P资源共享

    DHT网络的其中一种协议实现(Kademlia)

    • 要加入一个DHT网络,需要首先知道这个网络中的任意一个节点。如何获得这个节点?在一些开源的P2P软件中,会提供一些节点地址
    • 主要协议
    1. ping(用于确定某个节点是否在线。这个请求主要用于辅助路由表的更新)
    2. find_node(用于查找某个节点,以获得其地址信息。)
    3. get_peer(通过资源的infohash获得资源对应的peer列表。)
    4. announce_peer(通知其他节点自己开始下载某个资源,announce_peer中会携带get_peer回应消息里的token。)

    DHT爬虫的工作原理

    1. 通过其他节点的announce_peer发来的infohash确认网络中有某个资源可被下载
    2. 通过从网络中获取这个资源的种子文件,来获得该资源的描述
    3. 不停的认识新节点,让远程节点保存自身到远程的路由表中

    爬虫做的工作

    1. BOOTSTRAP过程,加入DHT网络(主动认识DHT网络的其中一个节点)
    2. 加入进DHT网络后。远端节点会主动告诉我们它认识哪些节点
    3. 认识远端节点认识的节点
    4. 当远端成功保存自身节点到远端路由表中的时候,目的达成
    5. 等待远端的announce_peer消息
    6. 成功获取远端的下载hash
    7. 开车!(雾

    使用Python实现的爬虫:

    # coding: utf-8
    
    import socket
    from hashlib import sha1
    from random import randint
    from struct import unpack, pack
    from socket import inet_aton, inet_ntoa
    from bisect import bisect_left
    from threading import Timer
    # from time import sleep
    
    from bencode import bencode, bdecode
    
    BOOTSTRAP_NODES = [
        ("router.bittorrent.com", 6881),
        ("dht.transmissionbt.com", 6881),
        ("router.utorrent.com", 6881)
    ] 
    TID_LENGTH = 4
    KRPC_TIMEOUT = 10
    REBORN_TIME = 5 * 60
    K = 8
    
    def entropy(bytes):
        s = ""
        for i in range(bytes):
            s += chr(randint(0, 255))
        return s
    
        # """把爬虫"伪装"成正常node, 一个正常的node有ip, port, node ID三个属性, 因为是基于UDP协议,     
        # 所以向对方发送信息时, 即使没"明确"说明自己的ip和port时, 对方自然会知道你的ip和port,     
        # 反之亦然. 那么我们自身node就只需要生成一个node ID就行, 协议里说到node ID用sha1算法生成,     
        # sha1算法生成的值是长度是20 byte, 也就是20 * 8 = 160 bit, 正好如DHT协议里说的那范围: 0 至 2的160次方,     
        # 也就是总共能生成1461501637330902918203684832716283019655932542976个独一无二的node.     
        # ok, 由于sha1总是生成20 byte的值, 所以哪怕你写SHA1(20)或SHA1(19)或SHA1("I am a 2B")都可以,     
        # 只要保证大大降低与别人重复几率就行. 注意, node ID非十六进制,     
        # 也就是说非FF5C85FE1FDB933503999F9EB2EF59E4B0F51ECA这个样子, 即非hash.hexdigest(). """
    def random_id():
        hash = sha1()
        hash.update( entropy(20) )
        return hash.digest()
    
    def decode_nodes(nodes):
        n = []
        length = len(nodes)
        if (length % 26) != 0: 
            return n
        for i in range(0, length, 26):
            nid = nodes[i:i+20]
            ip = inet_ntoa(nodes[i+20:i+24])
            port = unpack("!H", nodes[i+24:i+26])[0]
            n.append( (nid, ip, port) )
        return n
    
    def encode_nodes(nodes):
        strings = []
        for node in nodes:
            s = "%s%s%s" % (node.nid, inet_aton(node.ip), pack("!H", node.port))
            strings.append(s)
    
        return "".join(strings)
    
    def intify(hstr):
        #"""这是一个小工具, 把一个node ID转换为数字. 后面会频繁用到.""" 
        return long(hstr.encode('hex'), 16)	#先转换成16进制, 再变成数字
    
    def timer(t, f):
        Timer(t, f).start()
    
    
    class BucketFull(Exception):
        pass
    
    
    class KRPC(object):
        def __init__(self):
            self.types = {
                "r": self.response_received,
                "q": self.query_received
            }
            self.actions = {
                "ping": self.ping_received,
                "find_node": self.find_node_received,
                "get_peers": self.get_peers_received,
                "announce_peer": self.announce_peer_received,
            }
    
            self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
            self.socket.bind(("0.0.0.0", self.port))
    
        def find_node_handler(self,msg):
            pass
    
        def response_received(self, msg, address):
            self.find_node_handler(msg)
    
        def query_received(self, msg, address):
            try:
                self.actions[msg["q"]](msg, address)
            except KeyError:
                pass
    
        def send_krpc(self, msg, address):
            try:
                self.socket.sendto(bencode(msg), address)
            except:
                pass
    
    
    class Client(KRPC):
        def __init__(self, table):
            self.table = table
    
            timer(KRPC_TIMEOUT, self.timeout)
            timer(REBORN_TIME, self.reborn)
            KRPC.__init__(self)
    
        def find_node(self, address, nid=None):
            print "find node:",address
            nid = self.get_neighbor(nid) if nid else self.table.nid
            tid = entropy(TID_LENGTH)
            
            msg = {
                "t": tid,
                "y": "q",
                "q": "find_node",
                "a": {"id": nid, "target": random_id()}
            }
            self.send_krpc(msg, address)
    
        def find_node_handler(self, msg):
            try:
                nodes = decode_nodes(msg["r"]["nodes"])
                for node in nodes:
                    (nid, ip, port) = node
                    if len(nid) != 20: continue
                    if nid == self.table.nid: continue
                    self.find_node( (ip, port), nid )
            except KeyError:
                pass
    
        def joinDHT(self):
            for address in BOOTSTRAP_NODES: 
                self.find_node(address)
    
        def timeout(self):
            if len( self.table.buckets ) < 2:
                self.joinDHT()
            timer(KRPC_TIMEOUT, self.timeout)
    
        def reborn(self):
            self.table.nid = random_id()
            self.table.buckets = [ KBucket(0, 2**160) ]
            timer(REBORN_TIME, self.reborn)
    
        def start(self):
            self.joinDHT()
    
            while True:
                try:
                    (data, address) = self.socket.recvfrom(65536)
                    msg = bdecode(data)
                    self.types[msg["y"]](msg, address)
                except Exception:
                    pass
    
        def get_neighbor(self, target):
            return target[:10]+random_id()[10:]
    
    
    class Server(Client):
        def __init__(self, master, table, port):
            self.table = table
            self.master = master
            self.port = port
            Client.__init__(self, table)
    
        def ping_received(self, msg, address):
            try:
                nid = msg["a"]["id"]
                msg = {
                    "t": msg["t"],
                    "y": "r",
                    "r": {"id": self.get_neighbor(nid)}
                }
                self.send_krpc(msg, address)
                self.find_node(address, nid)
            except KeyError:
                pass
    
        def find_node_received(self, msg, address):
            try:
                target = msg["a"]["target"]
                neighbors = self.table.get_neighbors(target)
                
                nid = msg["a"]["id"]
                msg = {
                    "t": msg["t"],
                    "y": "r",
                    "r": {
                        "id": self.get_neighbor(target), 
                        "nodes": encode_nodes(neighbors)
                    }
                }
                self.table.append(KNode(nid, *address))
                self.send_krpc(msg, address)
                self.find_node(address, nid)
            except KeyError:
                pass
    
        def get_peers_received(self, msg, address):
            try:
                infohash = msg["a"]["info_hash"]
    
                neighbors = self.table.get_neighbors(infohash)
    
                nid = msg["a"]["id"]
                msg = {
                    "t": msg["t"],
                    "y": "r",
                    "r": {
                        "id": self.get_neighbor(infohash), 
                        "nodes": encode_nodes(neighbors)
                    }
                }
                self.table.append(KNode(nid, *address))
                self.send_krpc(msg, address)
                self.master.log(infohash)
                self.find_node(address, nid)
            except KeyError:
                pass
    
        def announce_peer_received(self, msg, address):
            try:
                infohash = msg["a"]["info_hash"]
                nid = msg["a"]["id"]
    
                msg = { 
                    "t": msg["t"],
                    "y": "r",
                    "r": {"id": self.get_neighbor(infohash)}
                }
    
                self.table.append(KNode(nid, *address))
                self.send_krpc(msg, address)
                self.master.log(infohash)
                self.find_node(address, nid)
            except KeyError:
                pass
    # 该类只实例化一次. 
    class KTable(object):
        # 这里的nid就是通过node_id()函数生成的自身node ID. 协议里说道, 每个路由表至少有一个bucket,     
     #	还规定第一个bucket的min=0, max=2^160次方, 所以这里就给予了一个buckets属性来存储bucket, 这个是列表.
        def __init__(self, nid):
            self.nid = nid
            self.buckets = [ KBucket(0, 2**160) ]
    
        def append(self, node):
            index = self.bucket_index(node.nid)
            try:
                bucket = self.buckets[index]
                bucket.append(node)
            except IndexError:
                return
            except BucketFull:
                if not bucket.in_range(self.nid): 
                    return
                self.split_bucket(index)
                self.append(node)
    
    
            # 返回与目标node ID或infohash的最近K个node.    
     
            # 定位出与目标node ID或infohash所在的bucket, 如果该bucuck有K个节点, 返回.     
            # 如果不够到K个节点的话, 把该bucket前面的bucket和该bucket后面的bucket加起来, 只返回前K个节点.    
            # 还是不到K个话, 再重复这个动作. 要注意不要超出最小和最大索引范围.    
            # 总之, 不管你用什么算法, 想尽办法找出最近的K个节点.    
        def get_neighbors(self, target):
            nodes = []
            if len(self.buckets) == 0: return nodes
            if len(target) != 20 : return nodes
    
            index = self.bucket_index(target)
            try:
                nodes = self.buckets[index].nodes
                min = index - 1
                max = index + 1
    
                while len(nodes) < K and ((min >= 0) or (max < len(self.buckets))):
                    if min >= 0:
                        nodes.extend(self.buckets[min].nodes)
    
                    if max < len(self.buckets):
                        nodes.extend(self.buckets[max].nodes)
    
                    min -= 1
                    max += 1
    
                num = intify(target)
                nodes.sort(lambda a, b, num=num: cmp(num^intify(a.nid), num^intify(b.nid)))
                return nodes[:K] #K是个常量, K=8 
            except IndexError:
                return nodes
    
        def bucket_index(self, target):
            return bisect_left(self.buckets, intify(target))
    
    
            # 拆表    
     
            # index是待拆分的bucket(old bucket)的所在索引值.     
            # 假设这个old bucket的min:0, max:16. 拆分该old bucket的话, 分界点是8, 然后把old bucket的max改为8, min还是0.     
            # 创建一个新的bucket, new bucket的min=8, max=16.    
            # 然后根据的old bucket中的各个node的nid, 看看是属于哪个bucket的范围里, 就装到对应的bucket里.     
            # 各回各家,各找各妈.    
            # new bucket的所在索引值就在old bucket后面, 即index+1, 把新的bucket插入到路由表里. 
        def split_bucket(self, index):
            old = self.buckets[index]
            point = old.max - (old.max - old.min)/2
            new = KBucket(point, old.max)
            old.max = point
            self.buckets.insert(index + 1, new)
            for node in old.nodes[:]:
                if new.in_range(node.nid):
                    new.append(node)
                    old.remove(node)
    
        def __iter__(self):
            for bucket in self.buckets:
                yield bucket
    
    
    class KBucket(object):
        __slots__ = ("min", "max", "nodes")
    
        # min和max就是该bucket负责的范围, 比如该bucket的min:0, max:16的话,     
        # 那么存储的node的intify(nid)值均为: 0到15, 那16就不负责, 这16将会是该bucket后面的bucket的min值.     
        # nodes属性就是个列表, 存储node. last_accessed代表最后访问时间, 因为协议里说到,     
        # 当该bucket负责的node有请求, 回应操作; 删除node; 添加node; 更新node; 等这些操作时,     
        # 那么就要更新该bucket, 所以设置个last_accessed属性, 该属性标志着这个bucket的"新鲜程度". 用linux话来说, touch一下.    
        # 这个用来便于后面说的定时刷新路由表.    
    
        def __init__(self, min, max):
            self.min = min
            self.max = max
            self.nodes = []
    
    
        # 添加node, 参数node是KNode实例.    
    
        # 如果新插入的node的nid属性长度不等于20, 终止.    
        # 如果满了, 抛出bucket已满的错误, 终止. 通知上层代码进行拆表.    
        # 如果未满, 先看看新插入的node是否已存在, 如果存在, 就替换掉, 不存在, 就添加,    
        # 添加/替换时, 更新该bucket的"新鲜程度".    
        def append(self, node):
            if node in self:
                self.remove(node)
                self.nodes.append(node)
            else:
                if len(self) < K:
                    self.nodes.append(node)
                else:
                    raise BucketFull
    
        def remove(self, node):
            self.nodes.remove(node)
    
        def in_range(self, target):
            return self.min <= intify(target) < self.max
    
        def __len__(self):
            return len(self.nodes)
    
        def __contains__(self, node):
            return node in self.nodes
    
        def __iter__(self):
            for node in self.nodes:
                yield node
    
        def __lt__(self, target):
            return self.max <= target
    
    
    class KNode(object):
         # """    
        #	     nid就是node ID的简写, 就不取id这么模糊的变量名了. __init__方法相当于别的OOP语言中的构造方法,     
        #	     在python严格来说不是构造方法, 它是初始化, 不过, 功能差不多就行.    
        #	     """ 
        __slots__ = ("nid", "ip", "port")
        
        def __init__(self, nid, ip, port):
            self.nid = nid
            self.ip = ip
            self.port = port
    
        def __eq__(self, other):
            return self.nid == other.nid
    
    
    
    #using example
    class Master(object):
        def __init__(self, f):
            self.f = f
            self.hashArr = []
    
        def log(self, infohash):
            nhash = infohash.encode("hex")
            if nhash not in self.hashArr:
                self.hashArr.append(nhash)
                self.f.write(+"
    ")
                self.f.flush()
    try:
        print "start DHT Spider"
        f = file("hash.txt","a+")
        m = Master(f)
        s = Server(Master(f), KTable(random_id()), 6881)
        s.start()	 
    except KeyboardInterrupt:
        s.socket.close()
        f.close()
    
  • 相关阅读:
    35个Java代码优化的细节,你知道几个?
    Java如何优雅地实现接口数据校验
    Java中方法的重载详解(含系统配套视频)
    七大经典、常用排序算法的原理、Java 实现以及算法分析
    Java静态方法和实例方法
    Java静态变量和实例变量
    “反转链表”相关的题目
    【C++】将十进制数转换为十六进制数
    第四章:动态规划I
    【C++】数组中的第k个最小元素
  • 原文地址:https://www.cnblogs.com/Karblue/p/5223177.html
Copyright © 2011-2022 走看看