共享一个代码算了,太忙鸟,有时间在补充。
function [] = dog_learn() img = imread('/Users/img/lena.png'); img = rgb2gray(img); gausFilter = fspecial('gaussian', [3,3], 4); %调节这个4这个值,发现求出来的点几乎没有变化 img = imfilter(img, gausFilter, 'replicate'); sigma = 1.6; k = 2^(1.0/3); diff_1 = dog_of_img(img, sigma, k*sigma); diff_2 = dog_of_img(img, k*sigma, k*k*sigma); diff_3 = dog_of_img(img, k^2*sigma, k^3*sigma); [point_r, point_c] = max_point(diff_1, diff_2, diff_3); plot(point_c, -point_r, '.'); end function [point_r, point_c] = max_point(diff1, diff2, diff3) [rows, cols] = size(diff1); point_r = []; point_c = []; for i = 2 : rows-1 for j = 2 : cols-1 point1 = diff1(i-1:i+1, j-1:j+1); point3 = diff3(i-1:i+1, j-1:j+1); point2 = diff2(i-1:i+1, j-1:j+1); max_point1 = max(max(point1)); max_point3 = max(max(point3)); max_point2 = max(max(point2)); if point2(1,1) > 0.8*max_point1 && point2(1,1) > 0.8*max_point3 && point2(1,1) > 0.9*max_point2 point_r(end+1) = i; point_c(end+1) = j; end end end end function diff_ = dog_of_img(grayImg1,sigma1,sigma2, size) gausFilter1 = fspecial('gaussian', 2*ceil(3*sigma1)+1, sigma1); gausFilter2 = fspecial('gaussian', 2*ceil(3*sigma2)+1, sigma2); blur1 = imfilter(grayImg1, gausFilter1, 'replicate'); blur2 = imfilter(grayImg1, gausFilter2, 'replicate'); diff_ = blur2 - blur1; end