zoukankan      html  css  js  c++  java
  • Python第三方库之openpyxl(11)

    Python第三方库之openpyxl(11)

    Stock Charts(股票图)

    在工作表上按特定顺序排列的列或行中的数据可以在股票图表中绘制。正如其名称所暗示的,股票图表通常被用来说明股价的波动。然而,这张图表也可以用于科学数据。例如,你可以用一个股票图表来表示每日或每年的温度波动。您必须按照正确的顺序组织您的数据,以创建股票图表。

    在工作表中组织股票图表数据是非常重要的。例如,为了创建一个简单的高低收盘价的股票图表,您应该按照这个顺序将您的数据以高、低和接近的形式排列为列标题。

    尽管股票图表是一种独特的类型,但各种类型只是特定格式选项的快捷方式:

    1.high-low-close本质上是一个没有线条的折线图,并且标记为XYZ。它也会使hiLoLines设置为True

    2.open-high-low-close是一个高低近距离的图表,每个数据点的标记都是XZZ和updownline。

    可以通过将股票图表与卷的条形图相结合来增加卷。

    from datetime import date
    
    from openpyxl import Workbook
    
    from openpyxl.chart import (
        BarChart,
        StockChart,
        Reference,
        Series,
    )
    from openpyxl.chart.axis import DateAxis, ChartLines
    from openpyxl.chart.updown_bars import UpDownBars
    
    wb = Workbook()
    ws = wb.active
    
    rows = [
       ['Date',      'Volume','Open', 'High', 'Low', 'Close'],
       ['2015-01-01', 20000,    26.2, 27.20, 23.49, 25.45,  ],
       ['2015-01-02', 10000,    25.45, 25.03, 19.55, 23.05, ],
       ['2015-01-03', 15000,    23.05, 24.46, 20.03, 22.42, ],
       ['2015-01-04', 2000,     22.42, 23.97, 20.07, 21.90, ],
       ['2015-01-05', 12000,    21.9, 23.65, 19.50, 21.51,  ],
    ]
    
    for row in rows:
        ws.append(row)
    
    # High-low-close
    c1 = StockChart()
    labels = Reference(ws, min_col=1, min_row=2, max_row=6)
    data = Reference(ws, min_col=4, max_col=6, min_row=1, max_row=6)
    c1.add_data(data, titles_from_data=True)
    c1.set_categories(labels)
    for s in c1.series:
        s.graphicalProperties.line.noFill = True
    # marker for close
    s.marker.symbol = "dot"
    s.marker.size = 5
    c1.title = "High-low-close"
    c1.hiLowLines = ChartLines()
    
    # Excel is broken and needs a cache of values in order to display hiLoLines :-/
    from openpyxl.chart.data_source import NumData, NumVal
    pts = [NumVal(idx=i) for i in range(len(data) - 1)]
    cache = NumData(pt=pts)
    c1.series[-1].val.numRef.numCache = cache
    
    ws.add_chart(c1, "A10")
    
    # Open-high-low-close
    c2 = StockChart()
    data = Reference(ws, min_col=3, max_col=6, min_row=1, max_row=6)
    c2.add_data(data, titles_from_data=True)
    c2.set_categories(labels)
    for s in c2.series:
        s.graphicalProperties.line.noFill = True
    c2.hiLowLines = ChartLines()
    c2.upDownBars = UpDownBars()
    c2.title = "Open-high-low-close"
    
    # add dummy cache
    c2.series[-1].val.numRef.numCache = cache
    
    ws.add_chart(c2, "G10")
    
    # Create bar chart for volume
    
    bar = BarChart()
    data =  Reference(ws, min_col=2, min_row=1, max_row=6)
    bar.add_data(data, titles_from_data=True)
    bar.set_categories(labels)
    
    from copy import deepcopy
    
    # Volume-high-low-close
    b1 = deepcopy(bar)
    c3 = deepcopy(c1)
    c3.y_axis.majorGridlines = None
    c3.y_axis.title = "Price"
    b1.y_axis.axId = 20
    b1.z_axis = c3.y_axis
    b1.y_axis.crosses = "max"
    b1 += c3
    
    c3.title = "High low close volume"
    
    ws.add_chart(b1, "A27")
    
    ## Volume-open-high-low-close
    b2 = deepcopy(bar)
    c4 = deepcopy(c2)
    c4.y_axis.majorGridlines = None
    c4.y_axis.title = "Price"
    b2.y_axis.axId = 20
    b2.z_axis = c4.y_axis
    b2.y_axis.crosses = "max"
    b2 += c4
    
    ws.add_chart(b2, "G27")
    
    wb.save("stock.xlsx")
    View Code

    注意:由于Excel high-low lines的缺陷,只有在至少一个数据系列有一些虚拟值时才会显示出来。这可以通过以下的攻击来完成:

    from openpyxl.chart.data_source import NumData, NumVal
    pts = [NumVal(idx=i) for i in range(len(data) - 1)]
    cache = NumData(pt=pts)
    c1.series[-1].val.numRef.numCache = cache

    运行结果

  • 相关阅读:
    Java单例模式深入详解
    深入理解Java的接口和抽象类
    java中为什么要给类使用代理?它有哪些好处?
    Log4j--java日志
    Log4j rootLogger配置
    selenium之 下拉选择框Select
    关于弹框
    spring controller接口中,用pojo对象接收页面传递的参数,发现spring在对pojo对象赋值时,有一定顺序的问题
    navicat mysql报错误:2013 Lost connection to MySQL server during query
    记录一次mysql导入千万条测试数据过慢的问题!
  • 原文地址:https://www.cnblogs.com/Keys819/p/9315632.html
Copyright © 2011-2022 走看看