//网络流s const int INF = 0x3f3f3f3f, maxn = 210; struct E { int u, v, flow; E(int u = 0, int v = 0, int flow = 0): u(u), v(v), flow(flow) {} } edg[maxn * maxn]; struct Dinic{ int cnt_edg, S, T; vector<int> edge[maxn]; // 边集 int dis[maxn];//距源点距离,分层图 int current[maxn];//当前弧 void ini() { for(int i=0;i<maxn;i++) edge[i].clear(); memset(edg, 0, sizeof edg); cnt_edg=0; } void addedg(int u, int v, int flow) { edge[u].push_back(cnt_edg); edg[cnt_edg++] = E(u, v, flow); // 正向边 edge[v].push_back(cnt_edg); edg[cnt_edg++] = E(v, u, 0); // 反向边容量为0 // 正向边下标通过异或就得到反向边下标, 2 ^ 1 == 3 ; 3 ^ 1 == 2 } bool bfs() { queue<int> q; q.push(S); memset(dis, -1, sizeof(dis)); dis[S] = 0; while (!q.empty()) { int index = q.front(); q.pop(); int sz = int(edge[index].size()); for (int i = 0; i < sz; i++) { E &e = edg[edge[index][i]]; if (e.flow > 0) { if (dis[e.v] < 0) { dis[e.v] = dis[index] + 1; q.push(e.v); } } } } return bool(~dis[T]); // 返回是否能够到达汇点 } int dfs(int index, int maxflow) { if (index == T) return maxflow; // i = current[index] 当前弧优化 int sz = int(edge[index].size()); for (int i = current[index], number; number = edge[index][i], i < sz; i++) { current[index] = i; E &e = edg[number]; if (dis[e.v] == dis[index] + 1 && e.flow > 0) { int flow = dfs(e.v, min(maxflow, e.flow)); if (flow != 0) { e.flow -= flow; // 正向边流量降低 edg[number ^ 1].flow += flow; // 反向边流量增加 return flow; } } } return 0; // 找不到增广路 退出 } int dinic() { int ans = 0; while (bfs()) {// 建立分层图 int flow; memset(current, 0, sizeof(current)); // BFS后应当清空当前弧数组 while (bool(flow = dfs(S, INF))) // 一次BFS可以进行多次增广 ans += flow; } return ans; } }D; //网络流e