zoukankan      html  css  js  c++  java
  • CodeForces 348D Turtles(LGV定理)题解

    题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种

    思路:LGV定理模板。但是定理中只能从n个不同起点走向n个不同终点,那么需要转化。显然必有一只从1, 2走到 n - 1, m,另一只从2, 1走到 n, m - 1。

    代码:

    #include<cmath>
    #include<set>
    #include<map>
    #include<queue>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include <iostream>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 3000 + 10;
    const int M = maxn * 30;
    const ull seed = 131;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1000000007;
    char mp[maxn][maxn];
    ll dp[maxn][maxn];
    ll e[5][5];
    ll guass(int n, ll p){
        ll ans = 1, f = 1;
        for(int i = 1; i <= n; i++){
            for(int j = i + 1; j <= n; j++){
                int x = i, y = j;
                while(e[y][i]){
                    ll t = e[x][i] / e[y][i];
                    for(int k = i; k <= n; k++)
                        e[x][k] = (e[x][k] - e[y][k] * t % p) % p;
                    swap(x,y);
                }
                if(x != i){
                    for(int k = 1; k <= n; k++)
                        swap(e[i][k], e[j][k]);
                    f = -f;
                }
            }
            ans = ans * e[i][i] % p;
            if(ans == 0) return 0;
        }
        return (ans * f + p) % p;
    }
    int main(){
        int n, m;
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++)
            scanf("%s", mp[i] + 1);
        memset(dp, 0, sizeof(dp));
        dp[1][2] = 1;
        for(int i = 1; i <= n; i++){
            for(int j = 2; j <= m; j++){
                if(i == 1 && j == 2) continue;
                if(mp[i][j] == '#') continue;
                dp[i][j] = 0;
                if(j - 1 >= 1 && mp[i][j - 1] != '#')
                    dp[i][j] += dp[i][j - 1];
                if(i - 1 >= 1 && mp[i - 1][j] != '#')
                    dp[i][j] += dp[i - 1][j];
                dp[i][j] = dp[i][j] % MOD;
            }
        }
        e[1][1] = dp[n - 1][m], e[1][2] = dp[n][m - 1];
        memset(dp, 0, sizeof(dp));
        dp[2][1] = 1;
        for(int i = 2; i <= n; i++){
            for(int j = 1; j <= m; j++){
                if(i == 2 && j == 1) continue;
                if(mp[i][j] == '#') continue;
                dp[i][j] = 0;
                if(j - 1 >= 1 && mp[i][j - 1] != '#')
                    dp[i][j] += dp[i][j - 1];
                if(i - 1 >= 1 && mp[i - 1][j] != '#')
                    dp[i][j] += dp[i - 1][j];
                dp[i][j] = dp[i][j] % MOD;
            }
        }
        e[2][1] = dp[n - 1][m], e[2][2] = dp[n][m - 1];
        printf("%lld
    ", guass(2, MOD));
        return 0;
    }
  • 相关阅读:
    APS.NET MVC + EF (14)---项目框架搭建
    APS.NET MVC + EF (11)---过滤器
    APS.NET MVC + EF (10)---使用AJAX
    APS.NET MVC + EF (06)---模型
    APS.NET MVC + EF (08)---数据注解和验证
    APS.NET MVC + EF (07)---表单和HTML辅助方法
    APS.NET MVC + EF (05)---控制器
    错误 1 error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
    VS2010中项目配置引入GDAL
    Win7(32/64)VS2010配置编译GDAL环境(图文教程+亲测可用!)
  • 原文地址:https://www.cnblogs.com/KirinSB/p/10816321.html
Copyright © 2011-2022 走看看