题意:n*m的格子,用1 * 3的矩形正好填满它,矩形不能重叠,问有几种填法
思路:poj2411进阶版。我们可以知道,当连续两行的摆法确定,那么接下来的一行也确定。当第一行还有空时,这时第三行必须要用3 * 1的去填;当第一行没有空第二行有空时,第三行必须不填;当第一行有空第二行没空,这种不能存在;当前两行没空时,我最多就是填1 * 3的方块。
代码:
#include<set> #include<map> #include<cmath> #include<queue> #include<cstdio> #include<vector> #include<cstring> #include <iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 11 + 5; const int M = maxn * 30; const ull seed = 131; const int INF = 0x3f3f3f3f; const int MOD = 1e4 + 7; ll dp[31][1 << maxn]; int fac[maxn]; int vis[maxn]; int n, m; int prest; //0:都是空的 1:上一个非空 2:都非空 int getSt(){ int ret = 0; for(int i = m - 1; i >= 0; i--) ret = ret * 3 + vis[i]; return ret; } void dfs(int i, int j){ if(j >= m){ int st = getSt(); dp[i][st] += dp[i - 1][prest]; return; } int p = prest / fac[j] % 3; if(p == 0){ vis[j] = 2; dfs(i, j + 1); } else if(p == 1){ vis[j] = 0; dfs(i, j + 1); } else{ if(j >= 2 && vis[j - 1] == 1 && vis[j - 2] == 1){ vis[j] = vis[j - 1] = vis[j - 2] = 2; dfs(i, j + 1); vis[j] = vis[j - 1] = vis[j - 2] = 1; } vis[j] = 1; dfs(i, j + 1); } } int main(){ fac[0] = 1; for(int i = 1; i <= 10; i++) fac[i] = fac[i - 1] * 3; while(~scanf("%d%d", &m, &n) && n + m){ memset(dp, 0, sizeof(dp)); dp[0][fac[m] - 1] = 1; for(int i = 1; i <= n; i++){ for(int j = 0; j < fac[m]; j++){ if(dp[i - 1][j] == 0) continue; memset(vis, 0, sizeof(vis)); prest = j; dfs(i, 0); } } printf("%lld ", dp[n][fac[m] - 1]); } return 0; }