题意:找出所有长度不大于L的,包含至少一个模式串的主串的个数。
思路:和2778类似,但是这里求1~L所有长度的种数。所以我们只要求出来不包含的所有个数就行。
假设AC自动机上所有节点的邻接矩阵为A,那么答案为$sum_{i=1}^n 26^i - sum_{i=1}^n A^i$。
因为L有点大,那么我们可以直接用矩阵快速幂来求:
令$S_n = sum_{i=1}^n 26^i ,T_n = sum_{i=1}^n A^i$
$$ left[ egin{matrix} T_{n-1} & A \ 0 & 0 end{matrix} ight] * left[ egin{matrix} A & 0 \ E & E end{matrix} ight] = left[ egin{matrix} T_{n} & A \ 0 & 0 end{matrix} ight]$$
$$ left[ egin{matrix} S_{n-1} & 26 \ 0 & 0 end{matrix} ight] * left[ egin{matrix} 26 & 0 \ 1 & 1 end{matrix} ight] = left[ egin{matrix} S_{n} & 26 \ 0 & 0 end{matrix} ight]$$
求$T_n$的时候直接开一个大矩阵求就行了
代码:
#include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include<vector> #include<cstring> #include <iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 30 + 5; const int M = 50 + 5; const ull seed = 131; const double INF = 1e20; const int MOD = 100000; int n; ll L; struct Mat{ ull s[maxn * 2][maxn * 2]; void init(){ for(int i = 0; i < maxn * 2; i++) for(int j = 0; j < maxn * 2; j++) s[i][j] = 0; } }; Mat mul(Mat &a, Mat &b, int tn){ Mat t; t.init(); for(int i = 0; i < tn; i++){ for(int j = 0; j < tn; j++){ for(int k = 0; k < tn; k++){ t.s[i][j] = t.s[i][j] + a.s[i][k] * b.s[k][j]; } } } return t; } Mat ppow(Mat a, ll b, int tn){ Mat ret; ret.init(); for(int i = 0; i < maxn * 2; i++) ret.s[i][i] = 1; while(b){ if(b & 1) ret = mul(ret, a, tn); a = mul(a, a, tn); b >>= 1; } return ret; } struct Aho{ struct state{ int next[26]; int fail, cnt; }node[maxn]; int size; queue<int> q; void init(){ size = 0; newtrie(); while(!q.empty()) q.pop(); } int newtrie(){ memset(node[size].next, 0, sizeof(node[size].next)); node[size].cnt = node[size].fail = 0; return size++; } void insert(char *s){ int len = strlen(s); int now = 0; for(int i = 0; i < len; i++){ int c = s[i] - 'a'; if(node[now].next[c] == 0){ node[now].next[c] = newtrie(); } now = node[now].next[c]; } node[now].cnt = 1; } void build(){ node[0].fail = -1; q.push(0); while(!q.empty()){ int u = q.front(); q.pop(); if(node[node[u].fail].cnt && u) node[u].cnt = 1; //都不能取 for(int i = 0; i < 26; i++){ if(!node[u].next[i]){ if(u == 0) node[u].next[i] = 0; else node[u].next[i] = node[node[u].fail].next[i]; } else{ if(u == 0) node[node[u].next[i]].fail = 0; else{ int v = node[u].fail; while(v != -1){ if(node[v].next[i]){ node[node[u].next[i]].fail = node[v].next[i]; break; } v = node[v].fail; } if(v == -1) node[node[u].next[i]].fail = 0; } q.push(node[u].next[i]); } } } } ull query(){ Mat A; A.init(); for(int i = 0; i < size; i++){ for(int j = 0; j < 26; j++){ if(node[node[i].next[j]].cnt == 0){ A.s[i][node[i].next[j]]++; } } } Mat a, b; a.init(), b.init(); for(int i = 0; i < size; i++){ for(int j = 0; j < size; j++){ a.s[i][j] = a.s[i][j + size] = b.s[i][j] = A.s[i][j]; } } for(int i = 0; i < size; i++){ b.s[i + size][i] = b.s[i + size][i + size] = 1; } b = ppow(b, L - 1, 2 * size); a = mul(a, b, 2 * size); ull ret = 0; for(int i = 0; i < size; i++){ if(node[i].cnt == 0) ret += a.s[0][i]; } return ret; } }ac; char s[20]; int main(){ while(~scanf("%d%lld", &n, &L)){ ull ans = 0; Mat a, b; a.init(), b.init(); a.s[0][0] = a.s[0][1] = 26; b.s[0][0] = 26, b.s[1][0] = 1, b.s[1][1] = 1; b = ppow(b, L - 1, 4); a = mul(a, b, 4); ans = a.s[0][0]; ac.init(); while(n--){ scanf("%s", s); ac.insert(s); } ac.build(); ull ret = ac.query(); cout << ans - ret << endl; } return 0; }