zoukankan      html  css  js  c++  java
  • HDU 6706 huntian oy(杜教筛 + 一些定理)题解

    题意:

    已知(f(n,a,b)=sum_{i=1}^nsum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]mod 1e9+7)(nleq1e9),且保证(ab)互质,求(f(n,a,b))

    思路:

    由不知道什么得:当(ab)互质,则(gcd(i^a-j^a,i^b-j^b)=i-j)
    那么可转化为:

    [egin{aligned} &sum_{i=1}^nsum_{j=1}^ii-j[gcd(i,j)=1]mod 1e9+7\ =&sum_{i=1}^nivarphi(i)-frac{i*varphi(i)}{2}\ =&frac{1}{2}(sum_{i=1}^nivarphi(i) - 1) end{aligned} ]

    那么问题转化为求:(sum_{i=1}^nivarphi(i)),因为前缀和有点大,所以估计要用到杜教筛,所以先卷积一下:

    [egin{aligned} (f*g)(n)=&sum_{d|n}f(d)g(frac{n}{d})\ =&sum_{d|n}ivarphi(i)g(frac{n}{d}) end{aligned} ]

    为了让卷积完的(h)(g)前缀更好求,那么这里不如令(g=id),那么((f*g)(n)=n*sum_{d|n}varphi(d)),又因为(varphi*I=id),故((f*g)(n)=n^2)
    所以可得终式:

    [S(n)=sum_{i=1}^ni^2-sum_{i=2}iS(lfloorfrac{n}{i} floor) ]

    因为超过(1e6)只有(10)组,所以我这里直接手动哈希比(map)快一点。

    代码:

    #include<map>
    #include<set>
    #include<cmath>
    #include<cstdio>
    #include<stack>
    #include<ctime>
    #include<vector>
    #include<queue>
    #include<cstring>
    #include<string>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    typedef long long ll;
    typedef unsigned long long ull;
    using namespace std;
    const int maxn = 4e6 + 5;
    const ll MOD = 1e9 + 7;
    const ull seed = 131;
    const int INF = 0x3f3f3f3f;
    
    int mark[maxn], prime[maxn], tot;
    ll phi[maxn];
    void init(int n){
        tot = 0;
        int i, j;
        phi[1] = 1;
        for(i = 2; i <= n; i++){
            if(!mark[i]){
                prime[++tot] = i;
                phi[i] = i - 1;
            }
            for(j = 1; j <= tot; j++){
                if(i * prime[j] > n)  break;
                mark[i * prime[j]] = 1;
                if(i % prime[j] == 0){
                    phi[i * prime[j]] = phi[i] * prime[j];
                    break;
                }
                else  phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    
        phi[0] = 0;
        for(int i = 1; i <= n; i++){
            phi[i] = (1LL * phi[i] * i + phi[i - 1]) % MOD;
        }
    }
    
    ll inv6 = 166666668, inv2 = 500000004;
    ll mphi[100000], UP;
    int vis[100000];
    int N = 4e6;
    ll getans(int x){
        return x <= N? phi[x] : mphi[UP / x];
    }
    ll ksc(ll a, ll b, ll p){
        ll t = a * b - (ll)((long double)a * b / p + 0.5) * p;
        return (t < 0)? t + p : t;
    }
    void solve(int n){
        int t = UP / n;
        if(n <= N) return;
        if(vis[t]) return;
        vis[t] = 1;
        mphi[t] = ksc(ksc(n, n + 1, MOD), 2 * n + 1, MOD) * inv6 % MOD;
        for(int l = 2, r; l <= n; l = r + 1){
            r = n / (n / l);
            solve(n / l);
            mphi[t] -= 1LL * (l + r) * (r - l + 1) % MOD * inv2 % MOD * getans(n / l) % MOD;
            mphi[t] %= MOD;
        }
    }
    int main(){
        int T;
        init(N);
    //    init(N + 1);
    //    printf("%lld
    ", (phi[N + 1] - 1) * inv2 % MOD);
        scanf("%d", &T);
        while(T--){
            ll ans;
            int n, a, b;
            scanf("%d%d%d", &n, &a, &b);
            if(n <= N) ans = phi[n];
            else{
                UP = n;
                memset(vis, 0, sizeof(vis));
                solve(n), ans = mphi[1];
            }
            ans = (ans - 1) * inv2;
            ans = (ans % MOD + MOD) % MOD;
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
    
  • 相关阅读:
    SQLalchemy 字段类型
    爬虫学习
    Linux了解一下
    django-rest-framework
    vue相关理论知识
    Django认证系统
    Form组件
    JS之AJAX
    Django之中间件
    Django之ORM
  • 原文地址:https://www.cnblogs.com/KirinSB/p/11477128.html
Copyright © 2011-2022 走看看