zoukankan      html  css  js  c++  java
  • HDU1043 Eight(八数码:逆向BFS打表+康托展开)题解

    Eight

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 28040    Accepted Submission(s): 7457
    Special Judge

    Problem Description
    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
     1  2  3  4
     5  6  7  8
     9 10 11 12
    13 14 15  x
    

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
     1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
     5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8
     9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12
    13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x
                r->            d->            r->
    

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
    arrangement.
     

    Input
    You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

    1 2 3
    x 4 6
    7 5 8

    is described by this list:

    1 2 3 x 4 6 7 5 8
     

    Output
    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
     

    Sample Input
    2 3 4 1 5 x 7 6 8
     
    Sample Output
    ullddrurdllurdruldr



    思路:

    预先打表,逆向BFS,用康托展开来记录当前序列(例如2 3 4 1 5 x 7 6表示为46100),用node[ i ].father指向它的父节点,node[ i ].step表示走向他父节点的方向(实际BFS中其实是相反的),所以最终我们只要在打完表后,在表中寻找当前序列是否存在;若存在则沿着父节点走到终点,若不存在,则unsolvable。

    参照代码:双击666查看代码

    看别人的题解用A*做的...慢慢去看... 

    第一次做的没用康托展开,直接map然后凉了,代码附在最后orz


    AC Code:

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<iostream>
    #include<algorithm>
    #define INF 0x3f3f3f3f
    #define N 1000005
    using namespace std;
    int fac[9],to[4][2]={0,1,0,-1,1,0,-1,0};
    char step[4]={'l','r','u','d'};	 
    struct node1{
    	int father;	//指示父节点 
    	char step;	//记录当前节点走向父节点的方向 
    }node[370000];
    struct node2{
    	int aa[9];	//当前序列 
    	int son;	//康托展开表示的位置 
    	int n;	//9的坐标 
    };
    
    void set_fac(){	//计算阶乘 
    	fac[0]=1;
    	for(int i=1;i<9;i++){
    		fac[i]=fac[i-1]*i;
    	}
    }
    int cantor(int a[]){	//康托展开 
    	int i,j,k,ans=0;
    	for(i=0;i<=8;i++){
    		k=0;
    		for(j=i+1;j<=8;j++){
    			if(a[i]>a[j]) k++;
    		}
    		ans+=fac[8-i]*k;
    	}
    	return ans;
    }
    void bfs(){
    	int fx,fy;
    	for(int i=0;i<370000;i++){
    		node[i].father=-1;
    	}
    	queue<node2> q;
    	node2 a,b;
    	for(int i=0;i<9;i++){	//从终点开始逆向搜索 
    		a.aa[i]=i+1;
    	}
    	a.son=369999;a.n=8;node[a.son].father=0;	//指向自己,表明终点 
    	q.push(a);
    	while(!q.empty()){
    		a=q.front();
    		q.pop();
    		for(int i=0;i<4;i++){
    			b=a;
    			fx=b.n/3;fy=b.n%3;	//对9坐标从一维转二维 
    			fx+=to[i][0];fy+=to[i][1];
    			if(fx<0 || fy<0 || fx>2 || fy>2) continue;
    			b.n=3*fx+fy;	//把行动后的9坐标从二维转一维  
    			int temp=b.aa[b.n];b.aa[b.n]=b.aa[a.n];b.aa[a.n]=temp;
    			b.son=cantor(b.aa);
    			if(node[b.son].father==-1){	//说明这个排列是第一次出现,即最少步骤 
    				node[b.son].father=a.son;
    				node[b.son].step=step[i];	//为了后面直接输出,这里与实际走向相反 
    				q.push(b);
    			}
    		}
    	}
    }
    
    int main(){
    	set_fac();
    	bfs();
    	char get[30];
    	int que[9];
    	while(gets(get)>0){
    		int k=0;
    		for(int i=0;get[i]!='';i++){
    			if(get[i]>='1' && get[i]<='8'){
    				que[k++]=get[i]-'0';
    			}
    			else if(get[i]=='x'){
    				que[k++]=9;
    			}
    		}
    		int s=cantor(que);
    		if(node[s].father==-1) printf("unsolvable
    ");
    		else{
    			while(node[s].father!=0){
    				printf("%c",node[s].step);
    				s=node[s].father;
    			}
    			printf("
    ");
    		}
    	}
    	return 0;
    }



    没用康托展开(Memory Limit Exceeded):

    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<cctype>
    #include<queue>
    #include<math.h>
    #include<map>
    #include<iostream>
    #include<algorithm>
    #define INF 0x3f3f3f3f
    #define N 1000005
    using namespace std;
    int to[4][2]={0,1,0,-1,1,0,-1,0};
    char step[4]={'l','r','u','d'};
    struct node{
    	int x,y;
    	string s;
    	string steps;
    };
    map<string,string> maps;
    void bfs(){
    	int f1,f2;
    	queue<node> q;
    	maps.clear();
    	node begin,a,b;
    	begin.steps="",begin.x=2,begin.y=2,begin.s="12345678x";
    	q.push(begin);
    	while(!q.empty()){
    		a=q.front();
    		q.pop();
    		for(int i=0;i<4;i++){
    			b=a;
    			b.x+=to[i][0];
    			b.y+=to[i][1];
    			b.steps+=step[i];
    			if(b.x<0 || b.y<0 || b.x>2 || b.y>2) continue;
    			f1=3*a.x+a.y;	//¶þάת»¯ÎªÒ»Î¬ 
    			f2=3*b.x+b.y;
    			b.s[f1]=a.s[f2];
    			b.s[f2]=a.s[f1];
    			if(maps.find(b.s)==maps.end()){
    				maps[b.s]=b.steps;
    				q.push(b);
    			}
    		}
    	}
    }
    
    int main(){
    	int i,j;
    	char str[10];
    	node f;
    	bfs();
    	for(i=0;i<9;i++){
    		cin>>str[i];
    		if(str[i]=='x'){
    			f.x=i/3;
    			f.y=i%3;
    		}
    		f.s+=str[i];
    	}
    	if(maps.find(str)==maps.end()) printf("unsolvable
    ");
    	else{
    		string ans=maps[f.s];
    		reverse(ans.begin(),ans.end());
    		cout<<ans<<endl;
    	}
    	return 0;
    }


  • 相关阅读:
    Linux w命令
    01.drf文档及外键字段反序列化
    redis的参数解释
    redis集群复制和故障转移
    codis原理及部署_01
    redis 主从哨兵02
    redis 主从哨兵01
    redis持久化
    redis python操作
    redis cluster
  • 原文地址:https://www.cnblogs.com/KirinSB/p/9409130.html
Copyright © 2011-2022 走看看