Tri Tiling
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4343 Accepted Submission(s): 2518
Problem Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes? Here is a sample tiling of a 3x12 rectangle.
![](http://acm.hdu.edu.cn/data/images/1143-1.jpg)
![](http://acm.hdu.edu.cn/data/images/1143-1.jpg)
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 ≤ n ≤ 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2812-1
Sample Output
31532131
思路:
先来看能用来填满的格子的样式:1是只能加两列,2是能加4+2*n列
对第一种:f[n]=3*f[n-2](在前n-2基础上不断加第一种)
对第二种:f[n]=2*f[n-4]+2*f[n-6]+...+2*f[0](在第二种基础上加第一种方块)
两式相加:f[n]=3*f[n-2]+2*f[n-4]+2*f[n-6]+...+2*f[0]-----------1
由上式得出:f[n-2]=3*f[n-4]+2*f[n-6]+2*f[n-8]+...+2*f[0]------2
将2代入1式得出最后递归式:f[n]=4*f[n-2]-f[n-4]
Code:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<cctype>
#include<queue>
#include<math.h>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define N 1000005
using namespace std;
int main(){
int n;
int a[35];
a[0]=1,a[2]=3;
for(int i=4;i<=30;i+=2) a[i]=4*a[i-2]-a[i-4];
while(~scanf("%d",&n)){
if(n==-1) break;
if(n%2) printf("0
");
else printf("%d
",a[n]);
}
return 0;
}