一般用的树链剖分都是指重链剖分的多,重链剖分在维护路径信息时比较优秀。
也可以使用长链剖分,使用深度最大的儿子作为“重儿子”即可,看了一下用于某种与深度有关的启发式合并比重链剖分好,等以后再研究吧。
#include<bits/stdc++.h>
#define lc (o<<1)
#define rc (o<<1|1)
typedef long long ll;
using namespace std;
const int MAXN = 100000 + 5;
int dep[MAXN], siz[MAXN], son[MAXN], fa[MAXN], top[MAXN], tid[MAXN], rnk[MAXN], cnt;
int n, m, r, mod;
int a[MAXN];
int head[MAXN], etop;
struct Edge {
int v, next;
} e[MAXN * 2];
inline void init(int n) {
etop = 0;
memset(head, -1, sizeof(head[0]) * (n + 1));
}
inline void addedge(int u, int v) {
e[++etop].v = v;
e[etop].next = head[u];
head[u] = etop;
e[++etop].v = u;
e[etop].next = head[v];
head[v] = etop;
}
struct SegmentTree {
int sum[MAXN * 4], lz[MAXN * 4];
void pushup(int o) {
sum[o] = (sum[lc] + sum[rc]) % mod;
}
void pushdown(int o, int l, int r) {
if(lz[o]) {
lz[lc] = (lz[lc] + lz[o]) % mod;
lz[rc] = (lz[rc] + lz[o]) % mod;
int m = l + r >> 1;
sum[lc] = (1ll * lz[o] * (m - l + 1) + sum[lc]) % mod;
sum[rc] = (1ll * lz[o] * (r - m) + sum[rc]) % mod;
lz[o] = 0;
}
}
void build(int o, int l, int r) {
if (l == r)
sum[o] = a[rnk[l]] % mod;
else {
int m = (l + r) >> 1;
build(lc, l, m);
build(rc, m + 1, r);
pushup(o);
}
lz[o] = 0;
}
void update(int o, int l, int r, int ql, int qr, int v) {
if (ql <= l && r <= qr) {
lz[o] = (lz[o] + v) % mod;
sum[o] = (sum[o] + 1ll * v * (r - l + 1)) % mod;
} else {
pushdown(o, l, r);
int m = (l + r) >> 1;
if (ql <= m)
update(lc, l, m, ql, qr, v);
if (qr >= m + 1)
update(rc, m + 1, r, ql, qr, v);
pushup(o);
}
}
int query(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) {
return sum[o];
} else {
pushdown(o, l, r);
int m = (l + r) >> 1;
int res = 0;
if (ql <= m)
res += query(lc, l, m, ql, qr);
if (qr >= m + 1)
res += query(rc, m + 1, r, ql, qr);
return res % mod;
}
}
} st;
void init1() {
dep[r] = 1;
}
void dfs1(int u, int t) {
siz[u] = 1, son[u] = -1, fa[u] = t;
for (int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v == t)
continue;
dep[v] = dep[u] + 1;
dfs1(v, u);
siz[u] += siz[v];
if (son[u] == -1 || siz[v] > siz[son[u]])
son[u] = v;
}
}
void init2() {
cnt = 0;
}
void dfs2(int u, int t) {
top[u] = t;
tid[u] = ++cnt;
rnk[cnt] = u;
if (son[u] == -1)
return;
dfs2(son[u], t);
for (int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v==fa[u]||v==son[u])
continue;
dfs2(v, v);
}
}
int query1(int u, int v) {
ll ret = 0;
int tu = top[u], tv = top[v];
while (tu != tv) {
if (dep[tu] >= dep[tv]) {
ret += st.query(1, 1, n, tid[tu], tid[u]);
u = fa[tu];
tu = top[u];
} else {
ret += st.query(1, 1, n, tid[tv], tid[v]);
v = fa[tv];
tv = top[v];
}
}
if(tid[u] <= tid[v])
ret += st.query(1, 1, n, tid[u], tid[v]);
else
ret += st.query(1, 1, n, tid[v], tid[u]);
return ret % mod;
}
inline int query2(int u) {
return st.query(1, 1, n, tid[u], tid[u] + siz[u] - 1);
}
inline void update1(int u, int v, int val) {
val %= mod;
int tu = top[u], tv = top[v];
while (tu != tv) {
if (dep[tu] >= dep[tv]) {
st.update(1, 1, n, tid[tu], tid[u], val);
u = fa[tu];
tu = top[u];
} else {
st.update(1, 1, n, tid[tv], tid[v], val);
v = fa[tv];
tv = top[v];
}
}
if(tid[u] <= tid[v])
st.update(1, 1, n, tid[u], tid[v], val);
else
st.update(1, 1, n, tid[v], tid[u], val);
}
inline void update2(int u, int val) {
val %= mod;
st.update(1, 1, n, tid[u], tid[u] + siz[u] - 1, val);
}
void op1() {
int u, v, val;
scanf("%d%d%d", &u, &v, &val);
update1(u, v, val);
}
void op2() {
int u, v;
scanf("%d%d", &u, &v);
printf("%d
", query1(u, v) % mod);
}
void op3() {
int u, val;
scanf("%d%d", &u, &val);
update2(u, val);
}
void op4() {
int u;
scanf("%d", &u);
printf("%d
", query2(u) % mod);
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
scanf("%d%d%d%d", &n, &m, &r, &mod);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
init(n);
for(int i = 1, u, v; i <= n - 1; ++i) {
scanf("%d%d", &u, &v);
addedge(u, v);
}
init1();
dfs1(r, -1);
init2();
dfs2(r, r);
st.build(1, 1, n);
for(int i = 1, op; i <= m; ++i) {
scanf("%d", &op);
switch(op) {
case 1:
op1();
break;
case 2:
op2();
break;
case 3:
op3();
break;
case 4:
op4();
break;
}
}
return 0;
}
对边树剖,除根节点外每个点表示它与它父亲的边。在轻重链交替时要算上上面的边,但是在同一重链上时要去掉上面的边。
pii CPTQuery(int u, int v) {
pii ret = {-INF, -INF};
int tu = top[u], tv = top[v];
while (tu != tv) {
if(dep[tu] > dep[tv]) {
swap(u, v);
tu = top[u], tv = top[v];
}
//对边树剖,没到同一重链的时候,要算上轻重链交错位置
ret = max(ret, st.Query(tid[tv], tid[v]));
v = fa[tv];
tv = top[v];
}
//对边树剖,已到达同一重链上,不再算上高处的节点对应的边,也就是左区间+1,越界需要返回
if(tid[u] == tid[v])
return ret;
if(dep[u] > dep[v])
swap(u, v);
ret = max(ret, st.Query(tid[u] + 1, tid[v]));
return ret;
}