zoukankan      html  css  js  c++  java
  • upc 3026 Exponial

    Exponial

    时间限制: 1 Sec  内存限制: 64 MB
    提交: 229  解决: 54
    [提交] [状态] [讨论版] [命题人:外部导入]

    题目描述


    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as

    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42
    

    样例输出

    2

    题意

    给一个N,M,求模M的结果。

    分析

    欧拉降幂的经典例题

    欧拉降幂公式:

    写递归求答案就可以了。

    ///  author:Kissheart  ///
    #include<stdio.h>
    #include<algorithm>
    #include<iostream>
    #include<string.h>
    #include<vector>
    #include<stdlib.h>
    #include<math.h>
    #include<queue>
    #include<deque>
    #include<ctype.h>
    #include<map>
    #include<set>
    #include<stack>
    #include<string>
    #define INF 0x3f3f3f3f
    #define FAST_IO ios::sync_with_stdio(false)
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int MAX=1e6+10;
    long long int mod;
    typedef long long ll;
    using namespace std;
    #define gcd(a,b) __gcd(a,b)
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    inline ll qpow(ll a,ll b,ll mod){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;}
    //inline ll inv1(ll b){return qpow(b,mod-2);}
    inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;}
    inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-'0';return x*f;}
    //freopen( "in.txt" , "r" , stdin );
    //freopen( "data.txt" , "w" , stdout );
    
    ll a[]={0,1,2,9,(1<<18)},n;
    ll phi(ll n)
    {
        ll ans=n;
        for (ll i=2;i*i<=n;i++)
        {
            if(n%i==0)
            {
                ans-=ans/i;
                while(n%i==0)
                    n/=i;
            }
        }
        if(n>1)
            ans-=ans/n;
        return ans;
    }
    
    
    ll f(ll n,ll m)
    {
        if(m==1) return 1;
        if(n<=4)
        {
            if(a[n]>=m) return a[n]%m+m;
            return a[n];
        }
        ll exp=f(n-1,phi(m));
        return qpow(n,exp,m)+m;
    }
    int main()
    {
    
        scanf("%lld%lld",&n,&mod);
        ll exp=f(n-1,phi(mod));
        ll ans=qpow(n,exp,mod)%mod;
        printf("%lld
    ",ans%mod);
    
        return 0;
    }
    View Code
  • 相关阅读:
    面向对象
    6.jQuery基础_试题
    5.JavaScript操作BOM、DOM对象_试题
    css疑问
    JAVA学习笔记_五JAVA开发中的WEB前端技术
    java学习笔记_mysql随堂考试_错题
    java学习笔记④MySql数据库--03/04 DQL查询
    java学习笔记④MySql数据库--01/02 database table 数据的增删改
    java学习笔记③JAVA核心API编程-01集合框架和泛型
    java学习笔记②JAVA面向对象
  • 原文地址:https://www.cnblogs.com/Kissheart/p/9748676.html
Copyright © 2011-2022 走看看