问题 B: 【动态规划】雷涛的小猫
时间限制: 1 Sec 内存限制: 128 MB提交: 161 解决: 49
[提交] [状态] [讨论版] [命题人:admin]
题目描述
雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的)。
在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了。可是有一天,雷涛下课回到寝室,却发现小猫不见了!经过一番寻找,才发现她正趴在阳台上对窗外的柿子树发呆…在北京大学的校园里,有许多柿子树,在雷涛所在的宿舍楼前,就有N棵。并且这N棵柿子树每棵的高度都是H。冬天的寒冷渐渐笼罩了大地,树上的叶子渐渐掉光了,只剩下一个个黄澄澄的柿子,看着非常喜人。而雷涛的小猫恰好非常的爱吃柿子,看着窗外树上的柿子,她十分眼馋,于是决定利用自己敏捷的跳跃能力跳到树上去吃柿子。小猫可以从宿舍的阳台上跳到窗外任意一棵柿子树的树顶。之后,她每次都可以在当前位置沿着当前所在的柿子树向下跳1单位距离。当然,小猫的能力远不止如此,她还可以在树之间跳跃。每次她都可以从当前这棵树跳到另外的任意一棵,在这个过程中,她的高度会下降Delta单位距离。每个时刻,只要她所在的位置有柿子,她就可以吃掉。整个“吃柿子行动”一直到小猫落到地面上为止。雷涛调查了所有柿子树上柿子的生长情况。饱很想知道,小猫从阳台出发,最多能吃到多少柿子?他知道写一个程序可以很容易的解决这个问题,但是他现在懒于写任何代码。于是,现在你的任务就是帮助雷涛写一个这样的程序。左图是N=3,H=10,Delta=2的一个例子。小猫按照图示路线进行跳跃,可以吃到最多的8个柿子
在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了。可是有一天,雷涛下课回到寝室,却发现小猫不见了!经过一番寻找,才发现她正趴在阳台上对窗外的柿子树发呆…在北京大学的校园里,有许多柿子树,在雷涛所在的宿舍楼前,就有N棵。并且这N棵柿子树每棵的高度都是H。冬天的寒冷渐渐笼罩了大地,树上的叶子渐渐掉光了,只剩下一个个黄澄澄的柿子,看着非常喜人。而雷涛的小猫恰好非常的爱吃柿子,看着窗外树上的柿子,她十分眼馋,于是决定利用自己敏捷的跳跃能力跳到树上去吃柿子。小猫可以从宿舍的阳台上跳到窗外任意一棵柿子树的树顶。之后,她每次都可以在当前位置沿着当前所在的柿子树向下跳1单位距离。当然,小猫的能力远不止如此,她还可以在树之间跳跃。每次她都可以从当前这棵树跳到另外的任意一棵,在这个过程中,她的高度会下降Delta单位距离。每个时刻,只要她所在的位置有柿子,她就可以吃掉。整个“吃柿子行动”一直到小猫落到地面上为止。雷涛调查了所有柿子树上柿子的生长情况。饱很想知道,小猫从阳台出发,最多能吃到多少柿子?他知道写一个程序可以很容易的解决这个问题,但是他现在懒于写任何代码。于是,现在你的任务就是帮助雷涛写一个这样的程序。左图是N=3,H=10,Delta=2的一个例子。小猫按照图示路线进行跳跃,可以吃到最多的8个柿子
输入
第一行三个整数N,H,Delta
接下来N行,每行一个整数Ni代表第i个树上柱子的数量
接下来Ni个整数,每个整数Tij代表第i个树的高度Tij上有一个柿子
1<=N,H<=2000
0<=Ni<=5000
1<=Delta<=N
1<=Ti<=H
输入文件不大于40960Kb
接下来N行,每行一个整数Ni代表第i个树上柱子的数量
接下来Ni个整数,每个整数Tij代表第i个树的高度Tij上有一个柿子
1<=N,H<=2000
0<=Ni<=5000
1<=Delta<=N
1<=Ti<=H
输入文件不大于40960Kb
输出
小猫能吃到多少柿子
样例输入
3 10 2
3 1 4 10
6 3 5 9 7 8 9
5 4 5 3 6 9
样例输出
8
题意:
有n棵树,高度为h,树上一些高度处有果子。小猫从某棵树的最高处往下跳,可以在这棵树上往下跳一格,也可以往下跳d格并且跳到另一棵树上。
问最多能得到多少果子
分析:
用dp[i][j]表示在i高度 第j棵树上的最多果子数量,所以有方程
dp[i][j]=max(dp[i+1][j]+t[i][j] ,a[i+d]+t[i][j]);
a[i]表示在位置i上能得到的最多果子数.
/// author:Kissheart /// #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<vector> #include<stdlib.h> #include<math.h> #include<queue> #include<deque> #include<ctype.h> #include<map> #include<set> #include<stack> #include<string> #define INF 0x3f3f3f3f #define FAST_IO ios::sync_with_stdio(false) const double PI = acos(-1.0); const double eps = 1e-6; const int MAX=1e5+10; const int mod=1e9+7; typedef long long ll; using namespace std; #define gcd(a,b) __gcd(a,b) inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;} inline ll qpow(ll a,ll b){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;} inline ll inv1(ll b){return qpow(b,mod-2);} inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;} inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-'0';return x*f;} //freopen( "in.txt" , "r" , stdin ); //freopen( "data.txt" , "w" , stdout ); int n,h,d,m; int dp[5005][2005]; int t[2005][5005],a[5005]; int main() { n=read(); h=read(); d=read(); for(int i=1;i<=n;i++) { m=read(); for(int j=1;j<=m;j++) { int x; x=read(); t[i][x]++; } } for(int i=h;i>=0;i--) { for(int j=1;j<=n;j++) { if(i+d<=h) dp[i][j]=max(dp[i+1][j]+t[j][i],a[i+d]+t[j][i]); else dp[i][j]=t[j][i]+dp[i+1][j]; a[i]=max(a[i],dp[i][j]); } } printf("%d ",a[1]); return 0; }