zoukankan      html  css  js  c++  java
  • 2021.04.03【NOIP提高B组】模拟 总结

    T1

    题目大意:求最小的 \(n\in[0,lim]\) 使得区间 \([L,R]\) 在线段树建树 \(build(0,n)\) 的区间内

    考场时想到了正解,结果推式子退错了。。。

    其实就是从下往上搜索,可以转到父节点为 \([l,2(l-1)-r],[l,2(l-1)-r+1],[r,2r-l],[r,2r-l+1]\)

    如果 \(l=0\) 那么 \(r\) 就是当前答案

    但是这样会时超,原因:如果无法将 \(l\) 缩小,那么 \(r\) 会一直扩大到 \(lim\) 才返回,会浪费许多时间

    其实如果 \(2l<r\) 就是不行的

    #include<bits/stdc++.h>
    using namespace std;
    const int inf=2100000000;
    int ql,qr,n,T,ans;
    void fnd(int l,int r) {
    	if(l<0||r>n||r<0||r>ans)return;
    	if(!l) { ans=r; return; }
    	if(2*l<r)return;
    	fnd(2*l-r-2,r);
    	fnd(2*l-r-1,r);
    	fnd(l,r*2-l);
    	fnd(l,r*2+1-l);
    }
    int main() {
    	scanf("%d",&T);
    	while(T--) {
    		scanf("%d%d%d",&ql,&qr,&n);
    		ans=inf;
    		if(ql^qr)fnd(ql,qr);
    		else if(qr<=n)ans=qr;
    		printf("%d\n",ans<inf?ans:-1);
    	}
    }
    

    希望以后式子不要退错

    T2

    题目大意: \(n\le 18\) 个桶,一次只能挑两个桶。每次有话费,问最小话费

    状压 dp 板子。

    T3

    题目大意:给你一个括号串,定义若 \(A,B\) 是合法串,则 \(AB\)\((A)\) 都是合法串。

    ​ 设经过 \(i\) 的合法串个数 \(ans_i\) ,求 \(\sum_{i=1}^n i\times ans_i\mod 100000007\)

    将一对括号合成一块,记 \(f_i,g_i\) 为第 \(i\) 个括号在左边、右边同级括号的个数

    则第 \(i\) 块的答案为 \(f_i*g_i\)

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N=1000005,P=1000000007;
    int T,n,top,st[N],fl[N],nxt[N],lst[N],f[N],g[N]; char x[N]; LL ans[N],res;
    inline void add(int l,int r,LL v) { ans[l]+=v,ans[r+1]-=v; }
    int main() {
    	scanf("%d",&T);
    	while(T--) {
    		scanf("%s",x+1);
    		n=strlen(x+1);
    		top=res=0,fl[0]=1;
    		memset(f,0,sizeof(f));
    		memset(g,0,sizeof(g));
    		memset(nxt,0,sizeof(nxt));
    		memset(lst,0,sizeof(lst));
    		memset(ans,0,sizeof(ans));
    		for(int i=1;i<=n;i++)
    			if(x[i]=='(')st[++top]=i,fl[top]=0;
    			else {
    				if(fl[top])++top,st[top]=i,fl[top]=1;
    				else lst[i]=st[top],nxt[st[top]]=i,--top;
    			}
    		for(int i=1;i<=n;i++)f[i]=lst[i]?f[lst[i]-1]+1:0;
    		for(int i=n;i>=1;i--)g[i]=nxt[i]?g[nxt[i]+1]+1:0;
    		for(int i=1;i<=n;i++)if(lst[i])add(lst[i],i,1LL*f[i]*g[lst[i]]);
    		for(int i=1;i<=n;i++)ans[i]+=ans[i-1],res+=1LL*i*ans[i]%P;
    		printf("%lld\n",res);
    	}
    }
    

    T4

    题目大意: \(A\) 数组降序,\(B_i=\sum_{j=i}^n A_i\) ,现在要从 \((n,1)\) 走到 \((1,1)\),每次可以从 \((x,y)\) 走到 \((x+1,y-1)\)\((x,\lfloor\dfrac{y+1}{2}\rfloor)\)

    ​ 若选择后者,花费为 \(B_x\)。问最小代价

    因为数组有序,所以在哈夫曼树中深度单调不减。考虑 \(dp\) 构建哈夫曼树

    \(f_{i,j}\) 为放入下标所有下标比 \(i\) 小的点,剩下 \(j\) 个叶子点

    1. 所有叶子节点扩展出两个后继,剩下所有节点深度加一,代价 \(\sum_{k=i+1}^nA_k\) 状态是 \(f_{2i,j}\)
    2. 把第 \(i\) 个数放到一个叶子上,无代价,状态是 \(f_{i+1,j-1}\)

    最后答案是 \(f_{n+1,k}\)

    把以上过程倒过来,就是模拟走路,所以直接用贪心构建哈夫曼树。 \(O(n\log n)\)

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N=100005;
    int T,n,h[N],tot;
    LL ans;
    inline void ins(int vl) {
    	register int x=++tot,fa=x>>1;
    	while(fa) {
    		if(vl<h[fa]) h[x]=h[fa],x=fa,fa>>=1;
    		else break;
    	} h[x]=vl;
    }
    inline void pop() {
    	register int x=1,sn=2,vl=h[tot--];
    	while(sn<=tot) {
    		if(sn<tot&h[sn|1]<h[sn]) sn|=1;
    		if(h[sn]<vl) h[x]=h[sn],x=sn,sn<<=1;
    		else break;
    	} h[x]=vl;
    }
    int main() {
    	scanf("%d",&T);
    	while(T--) {
    		scanf("%d",&n),tot=0;
    		for(int i=1,x;i<=n;i++)
    			scanf("%d",&x),ins(x);
    		ans=0;
    		for(int i=1,f,g;i<n;i++) {
    			f=h[1],pop(),g=h[1],pop();
    			ans+=1LL*f+1LL*g,ins(f+g);
    		}
    		printf("%lld\n",ans);
    	}
    }
    
  • 相关阅读:
    Vue —— 精讲 VueRouter( 2 )
    Vue —— 精讲 VueRouter(1)
    Vue —— 精讲 VueX (2)
    Vue —— 精讲 VueX (1)
    公司最近来了个实习生——我要哭了,同学们请收好你们的代码规范!!!!!代码不规范,同事两行泪
    NodeJS——大汇总(二)(只需要使用这些东西,就能处理80%以上业务需求,全网最全node解决方案,吐血整理)
    NodeJS——大汇总(一)(只需要使用这些东西,就能处理80%以上业务需求,全网最全node解决方案,吐血整理)
    Node教程——API接口开发(Node版的CRUD通用接口的搭建)(MangoDB+Express_Version2)
    Node教程——封装一个token验证器
    设计模式4
  • 原文地址:https://www.cnblogs.com/KonjakLAF/p/14629281.html
Copyright © 2011-2022 走看看