zoukankan      html  css  js  c++  java
  • 【POJ1470】Closest Common Ancestors

    Description

    Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

    Input

    The data set, which is read from a the std input, starts with the tree description, in the form: 

    nr_of_vertices 
    vertex:(nr_of_successors) successor1 successor2 ... successorn 
    ... 
    where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
    nr_of_pairs 
    (u v) (x y) ... 

    The input file contents several data sets (at least one). 
    Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

    Output

    For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
    For example, for the following tree: 

    Sample Input

    5
    5:(3) 1 4 2
    1:(0)
    4:(0)
    2:(1) 3
    3:(0)
    6
    (1 5) (1 4) (4 2)
          (2 3)
    (1 3) (4 3)

    Sample Output

    2:1
    5:5


    【题意】
      求LCA。

    【分析】
      跟上一题差不多,注意输入,没有那么复杂的。

    代码如下:

      1 #include<cstdio>
      2 #include<cstdlib>
      3 #include<cstring>
      4 #include<iostream>
      5 #include<algorithm>
      6 using namespace std;
      7 #define Maxn 10010
      8 #define INF 100000000
      9 
     10 int fa[Maxn],first[Maxn],size[Maxn],dep[Maxn],son[Maxn];
     11 int w[Maxn],top[Maxn];int wl;
     12 bool q[Maxn];
     13 int sum[Maxn];
     14 
     15 struct node
     16 {
     17     int x,y,next;
     18 }t[2*Maxn];int len;
     19 
     20 int mymax(int x,int y) {return x>y?x:y;}
     21 int mymin(int x,int y) {return x<y?x:y;}
     22 
     23 void ins(int x,int y)
     24 {
     25     t[++len].x=x;t[len].y=y;
     26     t[len].next=first[x];first[x]=len;
     27 }
     28 
     29 void dfs1(int x,int f)
     30 {
     31     fa[x]=f;dep[x]=dep[f]+1;size[x]=1;
     32     son[x]=0;
     33     for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
     34     {
     35         dfs1(t[i].y,x);
     36         size[x]+=size[t[i].y];
     37         if(size[t[i].y]>size[son[x]]) son[x]=t[i].y;
     38     }
     39 }
     40 
     41 void dfs2(int x,int tp)
     42 {
     43     w[x]=++wl;
     44     top[x]=tp;
     45     if(size[x]!=1) dfs2(son[x],tp);
     46     for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x]&&t[i].y!=son[x])
     47     {
     48         dfs2(t[i].y,t[i].y);
     49     }
     50 }
     51 
     52 int LCA(int a, int b)
     53 {
     54     while (1) 
     55     {
     56         if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
     57         else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
     58         else b=fa[top[b]];
     59     }
     60 }
     61 
     62 
     63 
     64 int main()
     65 {
     66     int n;
     67     while(scanf("%d",&n)!=EOF)
     68     {
     69         memset(first,0,sizeof(first));
     70         memset(q,0,sizeof(q));
     71         len=0;
     72         for(int i=1;i<=n;i++)
     73         {
     74             int x,y,z;
     75             scanf("%d:(%d) ",&x,&y);
     76             while(y--)
     77             {
     78                 scanf("%d",&z);
     79                 ins(x,z);q[z]=1;
     80             }
     81         }
     82         int root;
     83         for(int i=1;i<=n;i++) if(!q[i]) root=i;
     84         dep[0]=0;size[0]=0;
     85         dfs1(root,0);wl=0;
     86         dfs2(root,root);
     87         int m;
     88         scanf("%d",&m);getchar();
     89         memset(sum,0,sizeof(sum));
     90         for(int i=1;i<=m;i++)
     91         {
     92             int x,y;
     93             scanf(" (%d %d)",&x,&y);
     94             sum[LCA(x,y)]++;
     95         }
     96         for(int i=1;i<=n;i++) if(sum[i]!=0)
     97             printf("%d:%d
    ",i,sum[i]);
     98     }
     99     return 0;
    100 }
    [POJ1470]
    
    
    

    2016-05-10 13:14:31

    
    
    
    
  • 相关阅读:
    2017-2018-1 20179215《Linux内核原理与分析》第九周作业
    2017-2018-1 20179215 速读《构建之法》
    2017-2018-1 20179215 速读《从问题到程序》
    2017-2018-1 20179215《Linux内核原理与分析》第八周作业
    2017-2018-1 20179215《Linux内核原理与分析》第七周作业
    2017-2018-1 20179215 课堂测试
    2017-2018-1 20179215《Linux内核原理与分析》第六周作业
    2017-2018-1 20179215《Linux内核原理与分析》第五周作业
    20179215 第二周课堂测试
    2017-2018-1 20179215《Linux内核原理与分析》第三周作业
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5477465.html
Copyright © 2011-2022 走看看