zoukankan      html  css  js  c++  java
  • 【POJ1470】Closest Common Ancestors

    Description

    Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

    Input

    The data set, which is read from a the std input, starts with the tree description, in the form: 

    nr_of_vertices 
    vertex:(nr_of_successors) successor1 successor2 ... successorn 
    ... 
    where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
    nr_of_pairs 
    (u v) (x y) ... 

    The input file contents several data sets (at least one). 
    Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

    Output

    For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
    For example, for the following tree: 

    Sample Input

    5
    5:(3) 1 4 2
    1:(0)
    4:(0)
    2:(1) 3
    3:(0)
    6
    (1 5) (1 4) (4 2)
          (2 3)
    (1 3) (4 3)

    Sample Output

    2:1
    5:5


    【题意】
      求LCA。

    【分析】
      跟上一题差不多,注意输入,没有那么复杂的。

    代码如下:

      1 #include<cstdio>
      2 #include<cstdlib>
      3 #include<cstring>
      4 #include<iostream>
      5 #include<algorithm>
      6 using namespace std;
      7 #define Maxn 10010
      8 #define INF 100000000
      9 
     10 int fa[Maxn],first[Maxn],size[Maxn],dep[Maxn],son[Maxn];
     11 int w[Maxn],top[Maxn];int wl;
     12 bool q[Maxn];
     13 int sum[Maxn];
     14 
     15 struct node
     16 {
     17     int x,y,next;
     18 }t[2*Maxn];int len;
     19 
     20 int mymax(int x,int y) {return x>y?x:y;}
     21 int mymin(int x,int y) {return x<y?x:y;}
     22 
     23 void ins(int x,int y)
     24 {
     25     t[++len].x=x;t[len].y=y;
     26     t[len].next=first[x];first[x]=len;
     27 }
     28 
     29 void dfs1(int x,int f)
     30 {
     31     fa[x]=f;dep[x]=dep[f]+1;size[x]=1;
     32     son[x]=0;
     33     for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
     34     {
     35         dfs1(t[i].y,x);
     36         size[x]+=size[t[i].y];
     37         if(size[t[i].y]>size[son[x]]) son[x]=t[i].y;
     38     }
     39 }
     40 
     41 void dfs2(int x,int tp)
     42 {
     43     w[x]=++wl;
     44     top[x]=tp;
     45     if(size[x]!=1) dfs2(son[x],tp);
     46     for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x]&&t[i].y!=son[x])
     47     {
     48         dfs2(t[i].y,t[i].y);
     49     }
     50 }
     51 
     52 int LCA(int a, int b)
     53 {
     54     while (1) 
     55     {
     56         if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
     57         else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
     58         else b=fa[top[b]];
     59     }
     60 }
     61 
     62 
     63 
     64 int main()
     65 {
     66     int n;
     67     while(scanf("%d",&n)!=EOF)
     68     {
     69         memset(first,0,sizeof(first));
     70         memset(q,0,sizeof(q));
     71         len=0;
     72         for(int i=1;i<=n;i++)
     73         {
     74             int x,y,z;
     75             scanf("%d:(%d) ",&x,&y);
     76             while(y--)
     77             {
     78                 scanf("%d",&z);
     79                 ins(x,z);q[z]=1;
     80             }
     81         }
     82         int root;
     83         for(int i=1;i<=n;i++) if(!q[i]) root=i;
     84         dep[0]=0;size[0]=0;
     85         dfs1(root,0);wl=0;
     86         dfs2(root,root);
     87         int m;
     88         scanf("%d",&m);getchar();
     89         memset(sum,0,sizeof(sum));
     90         for(int i=1;i<=m;i++)
     91         {
     92             int x,y;
     93             scanf(" (%d %d)",&x,&y);
     94             sum[LCA(x,y)]++;
     95         }
     96         for(int i=1;i<=n;i++) if(sum[i]!=0)
     97             printf("%d:%d
    ",i,sum[i]);
     98     }
     99     return 0;
    100 }
    [POJ1470]
    
    
    

    2016-05-10 13:14:31

    
    
    
    
  • 相关阅读:
    CJSon使用
    mqtt学习-3 编译运行测试
    mqtt学习-2 创建c vs项目
    mqtt学习-1 Mqtt服务器搭建
    Linux c 开发-5 使用VsCode远程调试Linux程序
    Layui数据表格之获取表格中所有的数据方法
    layui 给数据表格加序号的方法
    Layui关闭弹出层并刷新父页面,父页面向子页面传值
    MUI中小数点的数字输入框,步进step为小数时的需求和浮点数的精确问题
    MUI-numbox(数字输入框),最小值、最大值、步长、获取值、设置值、重定义
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5477465.html
Copyright © 2011-2022 走看看