zoukankan      html  css  js  c++  java
  • 【HDU 4436】 str2int (广义SAM)

    str2int



    Problem Description
    In this problem, you are given several strings that contain only digits from '0' to '9', inclusive.
    An example is shown below.
    101
    123
    The set S of strings is consists of the N strings given in the input file, and all the possible substrings of each one of them.
    It's boring to manipulate strings, so you decide to convert strings in S into integers.
    You can convert a string that contains only digits into a decimal integer, for example, you can convert "101" into 101, "01" into 1, et al.
    If an integer occurs multiple times, you only keep one of them. 
    For example, in the example shown above, all the integers are 1, 10, 101, 2, 3, 12, 23, 123.
    Your task is to calculate the remainder of the sum of all the integers you get divided by 2012.
    Input
    There are no more than 20 test cases.
    The test case starts by a line contains an positive integer N.
    Next N lines each contains a string consists of one or more digits.
    It's guaranteed that 1≤N≤10000 and the sum of the length of all the strings ≤100000.
    The input is terminated by EOF.
    Output
    An integer between 0 and 2011, inclusive, for each test case.
    Sample Input
    5
    101
    123
    09
    000
    1234567890
    Sample Output
    202
    Source
     
     
    【分析】
      

      广义SAM,每个点记录一个ans,表示它代表的串的值的和。如果有前缀0,记得不能加进去,每个点标记一下它表示的串又做少个是有前缀0的,记为zr,用父亲的ans和zr更新儿子。

      if(now==1&&k==0) t[np].zr=1;
      else t[np].zr+=t[now].zr;

      t[np].ans=(t[np].ans+t[now].ans*10+(t[now].step-t[t[now].pre].step-t[now].zr)*k);
      SAM上有一步是新加一个点,继承某一个点的信息,记得这里要搞一下,把旧点信息减新点信息。

      建完机就可以直接统计答案了哈哈哈!!!

      

      具体看代码:

      

     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<queue>
     7 #include<cmath>
     8 #include<set>
     9 using namespace std;
    10 #define Mod 2012
    11 #define Maxn 1000010
    12 
    13 int n;
    14 struct node
    15 {
    16     int pre,step,son[30];
    17     int ans,zr;
    18 }t[2*Maxn];int tot;
    19 int last;
    20 
    21 char s[Maxn];
    22 
    23 void upd(int x)
    24 {
    25     memset(t[x].son,0,sizeof(t[x].son));
    26     t[x].pre=0;
    27     t[x].ans=0;t[x].zr=0;
    28 }
    29 
    30 void add(int now,int k,int np)
    31 {
    32     // if(now==1&&k==0) return;
    33     if(now==1&&k==0) t[np].zr=1;
    34     else /*if(k==0)*/ t[np].zr+=t[now].zr;
    35     t[now].son[k]=np;
    36     t[np].ans=(t[np].ans+t[now].ans*10+(t[now].step-t[t[now].pre].step-t[now].zr)*k)%Mod;
    37 }
    38 
    39 void extend(int k)
    40 {
    41     int np=++tot;upd(tot);
    42     t[np].step=t[last].step+1;
    43     int now=last;
    44     while(now&&!t[now].son[k])
    45     {
    46         add(now,k,np);// t[now].son[k]=np;
    47         now=t[now].pre;
    48     }
    49     if(!now) t[np].pre=1;
    50     else
    51     {
    52         int p=now,q=t[now].son[k];
    53         if(t[p].step+1==t[q].step) t[np].pre=q;
    54         else
    55         {
    56             int nq=++tot;upd(tot);
    57             memcpy(t[nq].son,t[q].son,sizeof(t[nq].son));
    58             t[nq].pre=t[q].pre;
    59             t[q].pre=t[np].pre=nq;
    60             t[nq].step=t[p].step+1;
    61             while(now&&t[now].son[k]==q)
    62             {
    63                 // t[now].son[k]=nq;
    64                 add(now,k,nq);
    65                 now=t[now].pre;
    66             }
    67             t[q].ans=(t[q].ans+Mod-t[nq].ans)%Mod;
    68             t[q].zr-=t[nq].zr;
    69         }
    70     }
    71     last=np;
    72 }
    73 
    74 int main()
    75 {
    76     while(scanf("%d",&n)!=EOF)
    77     {
    78         tot=0;
    79         t[++tot].step=1;upd(tot);
    80         for(int i=1;i<=n;i++)
    81         {
    82             scanf("%s",s+1);
    83             int l=strlen(s+1);
    84             last=1;
    85             for(int j=1;j<=l;j++)
    86             {
    87                 int k=s[j]-'0';
    88                 extend(k);
    89             }
    90         }
    91         int ans=0;
    92         for(int i=1;i<=tot;i++) ans=(ans+t[i].ans)%Mod;
    93         printf("%d
    ",ans);
    94     }
    95     return 0;
    96 }
    [HDU 4436]

    2016-09-21 20:51:06

  • 相关阅读:
    SenCha Touch AJAX跨域
    MS SQL 索引分析
    Tomcat性能优化(二) 启动参数设置
    PLSQL 连接不上64位ORACLE数据库解决办法
    PLSQL 配置连接ORACLE数据库
    Mybatis Batch 批量操作
    [No000014]听说不背单词,考英语会是这种下场-我们为什么必须背单词?
    [No000000]常用软件测试编译环境声明
    [No000013]在Office中关闭自动拼写检查和自动语法检查
    [No000012]编程中浮点数之什么是科学计数法
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5894095.html
Copyright © 2011-2022 走看看