zoukankan      html  css  js  c++  java
  • 【HDU 2855】 Fibonacci Check-up (矩阵乘法)

    Fibonacci Check-up



    Problem Description
    Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc.
    As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted? 
    Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision. 

    First you should multiply all digit of your studying number to get a number n (maybe huge).
    Then use Fibonacci Check-up!
    Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m. 
    But in this method we make the problem has more challenge. We calculate the formula , is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.
    Input
    First line is the testcase T.
    Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )
    Output
    Output the alpc-number.
    Sample Input
    2 1 30000 2 30000
    Sample Output
    1 3

    【题意】

      求S(n)=∑C[k][n]*Fibonacci(k) mod m(0<=k<=n)
      ( 0<= n <= 10^9, 1 <= m <= 30000 )

    【分析】

      组合数和斐波那契数列都是很有特点的东西,然而我想了一会儿还是没有想出来。

      现在又懂得了一点,能写出递推式,像斐波那契数列一样的,它的第k项其实可以表示成矩阵的幂,即A^k,把它当成数一样考虑就很方便。

      对于组合数,二项式定理啊真是太厉害了。。终于有点懂母函数的思想啊....

      

    图片转自:http://blog.csdn.net/hzh_0000/article/details/38171903

    其实还有第二种方法,我没打,感觉我不太可能推出来。。

    第一种方法代码如下:

     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<queue>
     7 #include<cmath>
     8 using namespace std;
     9 
    10 struct node
    11 {
    12     int a[5][5];
    13 }t[5];
    14 
    15 int n,m;
    16 
    17 void init()
    18 {
    19     t[0].a[1][1]=1;t[0].a[1][2]=1;
    20     t[0].a[2][1]=1;t[0].a[2][2]=2;
    21 }
    22 
    23 void mul(int x,int y,int z)
    24 {
    25     for(int i=1;i<=2;i++)
    26      for(int j=1;j<=2;j++)
    27      {
    28          t[2].a[i][j]=0;
    29          for(int k=1;k<=2;k++)
    30             t[2].a[i][j]=(t[2].a[i][j]+t[y].a[i][k]*t[z].a[k][j])%m;
    31      }
    32     t[x]=t[2];
    33 }
    34 
    35 void get_un()
    36 {
    37     memset(t[1].a,0,sizeof(t[1].a));
    38     for(int i=1;i<=2;i++) t[1].a[i][i]=1;
    39 }
    40 
    41 void qpow(int b)
    42 {
    43     get_un();
    44     while(b)
    45     {
    46         if(b&1) mul(1,0,1);
    47         mul(0,0,0);
    48         b>>=1;
    49     }
    50 }
    51 
    52 int main()
    53 {
    54     int T;
    55     scanf("%d",&T);
    56     while(T--)
    57     {
    58         scanf("%d%d",&n,&m);
    59         init();
    60         qpow(n);
    61         printf("%d
    ",t[1].a[1][2]);
    62     }
    63     return 0;
    64 }
    [HDU 2855]

    2016-09-28 14:10:22

  • 相关阅读:
    微博Feed流
    朋友圈
    Go命令行—compile
    Practical Go: Real world advice for writing maintainable Go programs
    Nginx Cache-Control
    Redis 主从复制
    JAVA
    Tomcat
    Tomcat
    CentOS 7
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5916113.html
Copyright © 2011-2022 走看看