zoukankan      html  css  js  c++  java
  • 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist
    time limit per test
    5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Vitalik the philatelist has a birthday today!

    As he is a regular customer in a stamp store called 'Robin Bobin', the store management decided to make him a gift.

    Vitalik wants to buy one stamp and the store will give him a non-empty set of the remaining stamps, such that the greatest common divisor (GCD) of the price of the stamps they give to him is more than one. If the GCD of prices of the purchased stamp and prices of present stamps set will be equal to 1, then Vitalik will leave the store completely happy.

    The store management asks you to count the number of different situations in which Vitalik will leave the store completely happy. Since the required number of situations can be very large, you need to find the remainder of this number modulo 109 + 7. The situations are different if the stamps purchased by Vitalik are different, or if one of the present sets contains a stamp that the other present does not contain.

    Input

    The first line of the input contains integer n (2 ≤ n ≤ 5·105) — the number of distinct stamps, available for sale in the 'Robin Bobin' store.

    The second line contains a sequence of integers a1, a2, ..., an (2 ≤ ai ≤ 107), where ai is the price of the i-th stamp.

    Output

    Print a single integer — the remainder of the sought number of situations modulo 109 + 7.

    Examples
    input
    3
    2 3 2
    output
    5
    input
    2
    9 6
    output
    0
    Note

    In the first sample the following situations are possible:

    • Vitalik buys the 1-st stamp, the store gives him the 2-nd stamp as a present;
    • Vitalik buys the 3-rd stamp, the store gives him the 2-nd stamp as a present;
    • Vitalik buys the 2-nd stamp, the store gives him the 1-st stamp as a present;
    • Vitalik buys the 2-nd stamp, the store gives him the 3-rd stamp as a present;
    • Vitalik buys the 2-nd stamp, the store gives him the 1-st and 3-rd stamps as a present.

    【题意】

      给出一列数,对于每一个数,求选出一个不包含当前数的非空子集满足子集与当前数gcd为1,并且子集中的所有数的gcd不为1的方案数,统计总和。

    【分析】

      就是说s是一个子集,x是一个数,然后求$sum gcd(s,x)==1且gcd(s)!=1$

        设d=gcd(s),枚举这个d,那就是(2^[d的倍数的个数]-1)*(不是含d因子的数)

      但是这样会重复,比如2,3,6在2,3,6时都算了一遍。所以容斥。【你会发现容斥系数是莫比乌斯函数的相反数

      【然后mu[i]=0就没有必要算了。时间极限是mlogm,但是mu=0没算,应该会快一点把【反正过了

     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<algorithm>
     6 using namespace std;
     7 #define Maxn 500010
     8 #define Maxm 10001000
     9 #define Mod 1000000007
    10 
    11 int mu[Maxm],pri[Maxm],pl,mx;
    12 int cnt[Maxm],pw[Maxn],a[Maxn];
    13 bool vis[Maxm];
    14 void init()
    15 {
    16     memset(vis,0,sizeof(vis));
    17     for(int i=2;i<=mx;i++)
    18     {
    19         if(!vis[i]) pri[++pl]=i,mu[i]=-1;
    20         for(int j=1;j<=pl;j++)
    21         {
    22             if(pri[j]*i>mx) break;
    23             vis[pri[j]*i]=1;
    24             if(i%pri[j]==0) mu[i*pri[j]]=0;
    25             else mu[i*pri[j]]=-mu[i];
    26             if(i%pri[j]==0) break;
    27         }
    28     }
    29 }
    30 
    31 int main()
    32 {
    33     int n;
    34     scanf("%d",&n);mx=0;
    35     memset(cnt,0,sizeof(cnt));
    36     for(int i=1;i<=n;i++) {scanf("%d",&a[i]);mx=max(mx,a[i]);cnt[a[i]]++;}
    37     init();
    38     pw[0]=1;for(int i=1;i<=n;i++) pw[i]=(pw[i-1]*2)%Mod;
    39     int ans=0;
    40     for(int i=2;i<=mx;i++) if(mu[i]!=0)
    41     {
    42         int nw=0;
    43         for(int j=i;j<=mx;j+=i) nw+=cnt[j];
    44         ans=(ans+1LL*(pw[nw]-1)*(-mu[i])*(n-nw)%Mod)%Mod;
    45     }
    46     ans=(ans+Mod)%Mod;
    47     printf("%d
    ",ans);
    48     return 0;
    49 }
    View Code

    2017-04-20 19:16:41

  • 相关阅读:
    函数参数传递
    C# 串口发送 陷阱,必须知道的坑
    Altera Quartus 13.1 仿真工具路径错误问题解决 Can't launch the ModelSim-Altera software
    Altium Designer 快速修改板子形状为Keep-out layer大小
    Altium Designer 敷铜间距设置,真实有效
    VS2012,VS2013启用SQLite的Data Provider界面显示
    Sqlite 设置外键级联更新
    Sqlite 设置默认时间为本地时间
    FPGA学习笔记之Altera FPGA使用JIC文件配置固化教程(转)
    FPGA学习记录
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/6740369.html
Copyright © 2011-2022 走看看