题目链接
Solution
线段树是一门比较刁钻的手艺...
此题我们需要维护 (4) 个变量:
- (amx) 代表当前节点的最大值.
- (lmx) 代表当前节点以左端点为起点的区间最大值.
- (rmx) 代表当前节点以右端点为结尾的区间最大值.
- (sum) 代表整段的和.
然后我们在 (push)_(up) 的时候,也是要做蛮多工作.
(lc) 为左端点,(rc) 为右端点.
-
(lmx=max(lmx_{lc},sum_{lc}+lmx_{rc}))
也就是说可以单独取左儿子里的最大值,也可以一直取到右儿子的 (lmx) 为止. -
(rmx=max(rmx_{rc},sum_{rc}+rmx_{lc}))
和上文同理. -
(sum=sum_{lc}+sum_{rc})
-
(amx=max(amx_{lc},amx_{rc},rmx_{lc}+lmx_{rc}))
最关键的一步,更新每一个节点的答案. 可以在图上自己理解,此处不赘述.
特别注意,查询的时候也要把所有查出来的区间进行类似的操作...
Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1000008;
struct node
{
int l,r,lc,rc;
int lmx,rmx,amx,sum;
}sgm[maxn*4];
int n,m,k,x,y;
int cnt,a[maxn];
void push_up(int x)
{
int ll=sgm[x].lc,rr=sgm[x].rc;
sgm[x].sum=sgm[ll].sum+sgm[rr].sum;
sgm[x].lmx=max(sgm[ll].lmx,sgm[ll].sum+sgm[rr].lmx);
sgm[x].rmx=max(sgm[rr].rmx,sgm[rr].sum+sgm[ll].rmx);
sgm[x].amx=max(max(sgm[ll].amx,sgm[rr].amx),sgm[ll].rmx+sgm[rr].lmx);
}
void build(int l,int r,int now)
{
sgm[now].l=l;
sgm[now].r=r;
if(l==r)
{
sgm[now].lmx=sgm[now].rmx=sgm[now].sum=sgm[now].amx=a[l];
return;
}
int mid=(l+r)>>1;
sgm[now].lc=2*now;
build(l,mid,sgm[now].lc);
sgm[now].rc=2*now+1;
build(mid+1,r,sgm[now].rc);
push_up(now);
}
void change(int now,int to,int num)
{
int x=sgm[now].l,y=sgm[now].r;
if(x==y)
{
sgm[now].lmx=sgm[now].rmx=sgm[now].sum=sgm[now].amx=num;
return;
}
int mid=(x+y)>>1;
if(to<=mid) change(sgm[now].lc,to,num);
else change(sgm[now].rc,to,num);
push_up(now);
}
node query(int now,int l,int r)
{
int x=sgm[now].l,y=sgm[now].r;
if(l<=x&&r>=y) return sgm[now];
int mid=(x+y)>>1,ll=sgm[now].lc,rr=sgm[now].rc;
if(r<=mid) return query(ll,l,r);
else if(l>mid) return query(rr,l,r);
else
{
node t,t1=query(ll,l,r),t2=query(rr,l,r);
t.lmx=max(t1.lmx,t1.sum+t2.lmx);
t.rmx=max(t2.rmx,t2.sum+t1.rmx);
t.amx=max(max(t1.amx,t2.amx),t1.rmx+t2.lmx);
return t;
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
build(1,n,1);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&k,&x,&y);
if(k==1)
{
if(x>y) swap(x,y);
printf("%d
",query(1,x,y).amx);
}
else change(1,x,y);
}
return 0;
}