zoukankan      html  css  js  c++  java
  • codeforces 1006 F(折半搜索)

    F. Xor-Paths
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There is a rectangular grid of size n×mn×m. Each cell has a number written on it; the number on the cell (i,ji,j) is ai,jai,j. Your task is to calculate the number of paths from the upper-left cell (1,11,1) to the bottom-right cell (n,mn,m) meeting the following constraints:

    • You can move to the right or to the bottom only. Formally, from the cell (i,ji,j) you may move to the cell (i,j+1i,j+1) or to the cell (i+1,ji+1,j). The target cell can't be outside of the grid.
    • The xor of all the numbers on the path from the cell (1,11,1) to the cell (n,mn,m) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).

    Find the number of such paths in the given grid.

    Input

    The first line of the input contains three integers nn, mm and kk (1n,m201≤n,m≤20, 0k10180≤k≤1018) — the height and the width of the grid, and the number kk.

    The next nn lines contain mm integers each, the jj-th element in the ii-th line is ai,jai,j (0ai,j10180≤ai,j≤1018).

    Output

    Print one integer — the number of paths from (1,11,1) to (n,mn,m) with xor sum equal to kk.

    Examples
    input
    Copy
    3 3 11
    2 1 5
    7 10 0
    12 6 4
    output
    Copy
    3
    input
    Copy
    3 4 2
    1 3 3 3
    0 3 3 2
    3 0 1 1
    output
    Copy
    5
    input
    Copy
    3 4 1000000000000000000
    1 3 3 3
    0 3 3 2
    3 0 1 1
    output
    Copy
    0
    Note

    All the paths from the first example:

    • (1,1)(2,1)(3,1)(3,2)(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3);
    • (1,1)(2,1)(2,2)(2,3)(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3);
    • (1,1)(1,2)(2,2)(3,2)(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3).

    All the paths from the second example:

    • (1,1)(2,1)(3,1)(3,2)(3,3)(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4);
    • (1,1)(2,1)(2,2)(3,2)(3,3)(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4);
    • (1,1)(2,1)(2,2)(2,3)(2,4)(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4);
    • (1,1)(1,2)(2,2)(2,3)(3,3)(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4);
    • (1,1)(1,2)(1,3)(2,3)(3,3)(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4)
    /*
    暴搜2^(n+m)
    折半搜索 
    */
    #include<bits/stdc++.h>
    
    #define N 27
    #define ll long long
    
    using namespace std;
    ll n,m,k,ans,flag;
    ll a[N][N];
    map<ll,ll>M[N][N];
    
    inline ll read()
    {
         ll x=0,f=1;char c=getchar();
         while(c>'9'||c<'0'){if(x=='-')f=-1;c=getchar();}
         while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
         return x*f;
    }
    
    void dfs(int dep,int x,int y,ll sta)
    {
        if(x<1 || x>n || y<1 || y>m) return;
        if(!flag) sta^=a[x][y];
        if(x+y==dep)
        {
            if(!flag){M[x][y][sta]++;return;}
            else{ans+=M[x][y][k^sta];return;}
        }
        if(!flag){
            dfs(dep,x+1,y,sta);dfs(dep,x,y+1,sta);
        }
        else{
            sta^=a[x][y];
            dfs(dep,x-1,y,sta);dfs(dep,x,y-1,sta);
        }
    }
    
    int main()
    {
        n=read();m=read();k=read();
        for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
        a[i][j]=read();
        flag=0;dfs((n+m+2)/2,1,1,0);
        flag=1;dfs((n+m+2)/2,n,m,0);
        printf("%lld
    ",ans);
        return 0;
    }

     

  • 相关阅读:
    MyBatis
    泛型集合(经典)
    Java高级特性--------->>>>>实用类
    Java高级特性----->>>>集合
    【java面试题】StringBuilder与StringBuffer和String 的区别
    Java面向对象------>try{}catch(){}异常
    Java面向对象----->接口和抽象类
    Java修饰符------>static、native和final以及super和this关键字
    面向对象------->多态
    面向对象--->封装和继承
  • 原文地址:https://www.cnblogs.com/L-Memory/p/9890727.html
Copyright © 2011-2022 走看看