1.统计需求
1、统计每门课程的参考人数和课程平均分
2、统计每门课程参考学生的平均分,并且按课程存入不同的结果文件,要求一门课程一个结果文件,并且按平均分从高到低排序,分数保留一位小数。
3、求出每门课程参考学生成绩最高的学生的信息:课程,姓名和平均分。
数据及字段说明:
computer,huangxiaoming,85,86,41,75,93,42,85 computer,xuzheng,54,52,86,91,42 computer,huangbo,85,42,96,38 english,zhaobenshan,54,52,86,91,42,85,75 english,liuyifei,85,41,75,21,85,96,14 algorithm,liuyifei,75,85,62,48,54,96,15 computer,huangjiaju,85,75,86,85,85 english,liuyifei,76,95,86,74,68,74,48 english,huangdatou,48,58,67,86,15,33,85 algorithm,huanglei,76,95,86,74,68,74,48 algorithm,huangjiaju,85,75,86,85,85,74,86 computer,huangdatou,48,58,67,86,15,33,85 english,zhouqi,85,86,41,75,93,42,85,75,55,47,22 english,huangbo,85,42,96,38,55,47,22 algorithm,liutao,85,75,85,99,66 computer,huangzitao,85,86,41,75,93,42,85 math,wangbaoqiang,85,86,41,75,93,42,85 computer,liujialing,85,41,75,21,85,96,14,74,86 computer,liuyifei,75,85,62,48,54,96,15 computer,liutao,85,75,85,99,66,88,75,91 computer,huanglei,76,95,86,74,68,74,48 english,liujialing,75,85,62,48,54,96,15 math,huanglei,76,95,86,74,68,74,48 math,huangjiaju,85,75,86,85,85,74,86 math,liutao,48,58,67,86,15,33,85 english,huanglei,85,75,85,99,66,88,75,91 math,xuzheng,54,52,86,91,42,85,75 math,huangxiaoming,85,75,85,99,66,88,75,91 math,liujialing,85,86,41,75,93,42,85,75 english,huangxiaoming,85,86,41,75,93,42,85 algorithm,huangdatou,48,58,67,86,15,33,85 algorithm,huangzitao,85,86,41,75,93,42,85,75
数据解释
数据字段个数不固定:
第一个是课程名称,总共四个课程,computer,math,english,algorithm,
第二个是学生姓名,后面是每次考试的分数,但是每个学生在某门课程中的考试次数不固定。
2.问题一:统计每门课程的参考人数和课程平均分
根据数据分析,可以根据课程分组求解,这里的分组我们是直接在mapper端使用课程作为输出的key进行分组的,这样每门课程所有的记录会在同一个reduce方法中进行处理,mapper端只要准备好每个学生参考某门课的次数和总成绩即可。
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 统计每门课程的参考人数和课程平均分 * computer,huangxiaoming,85,86,41,75,93,42,85 */ public class CourseOne { public static class MyMapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { //对数据进行解析,分析数据可知第三个字段是学生在某门课程中的考试次数 //根据问题可以分析,统计参考人数,只有使用课程作为key,在reduce阶段终极数据条数即可 //对于课程的平均分要统计该门课程所有学生全部的考试次数,以及总分 //在mapper阶段,能统计每一个学生在每个课程中的总考试次数和总分 String[] lines = value.toString().split(","); //sum用来统计学生在某门课程中的考试成绩 long sum = 0L; //totalTimes用来统计学生在某门课程中的考试次数 //computer,huangxiaoming,85,86,41,75,93,42,85 //首先数据时通过','进行分隔的,所以通过mapper逐行读取然后根据','进行切分得到一个数组 //然后从第三个元素开始就是某位学生在某门课程中一次考试的成绩 //所以使用数组长度减去2就是该学生在该课程中的总考试次数 long totalTimes = lines.length-2; //通过循环遍历累加该学生在该课程中的考试成绩 for (int i = 2; i < lines.length; i++) { sum += Long.parseLong(lines[i]); } //最后的输出,使用课程名称作为key 例如:computer //使用拼接字符串的形式创建value,方便reducer阶段的处理 //使用totalTimes+"_"+sum 这种拼接方式, //考试次数 + 总成绩 context.write(new Text(lines[0]), new Text(totalTimes+"_"+sum)); } } public static class MyReducer extends Reducer<Text,Text, Text, Text>{ @Override protected void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException { //相同的课程会被分到一个组 //考试人数计数器 int count = 0; //得分累加器 int totalScore = 0; //考试次数计数器 int examTimes = 0; for (Text t : values) { String[] arrs = t.toString().split("_"); count++; totalScore += Integer.parseInt(arrs[1]); examTimes += Integer.parseInt(arrs[0]); } //求平均分 float avg = totalScore*1.0F/examTimes; //输出结果 context.write(key, new Text(count+" "+avg)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(CourseOne.class); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(job, new Path("G:/files/mr/day2/q3/input")); FileOutputFormat.setOutputPath(job,new Path("G:/files/mr/day2/q3/output1") ); boolean isDone = job.waitForCompletion(true); System.exit(isDone ? 0:1); } }
3.问题二:统计每门课程参考学生的平均分,并且按课程存入不同的结果文件,要求一门课程一个结果文件,并且按平均分从高到低排序,分数保留一位小数。
自定义数据类型:CourseBean
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class CourseBean implements WritableComparable<CourseBean>{ private String course; //课程名 private String name; //学生姓名 private float avg; //平均分 public String getCourse() { return course; } public void setCourse(String course) { this.course = course; } public String getName() { return name; } public void setName(String name) { this.name = name; } public float getAvg() { return avg; } public void setAvg(float avg) { this.avg = avg; } public CourseBean(String course, String name, float avg) { super(); this.course = course; this.name = name; this.avg = avg; } public CourseBean() { } /** * 通过toString方法自定义输出类型 */ @Override public String toString() { return course + " " + name + " " + avg; } /** * 序列化 */ @Override public void write(DataOutput out) throws IOException { out.writeUTF(course); out.writeUTF(name); out.writeFloat(avg); } /** * 反序列化 */ @Override public void readFields(DataInput in) throws IOException { course = in.readUTF(); name = in.readUTF(); avg = in.readFloat(); } //比较规则 @Override public int compareTo(CourseBean o) { float flag = o.avg - this.avg; return flag > 0.0f ? 1:-1; }
自定义分区组件:CourseGroupComparator
import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Partitioner; public class CoursePartitioner extends Partitioner<CourseBean, NullWritable>{ /*algorithm 6 71.12195 computer 10 69.77273 english 9 66.35294 math 7 73.07843*/ @Override public int getPartition(CourseBean key, NullWritable value, int numPartitions) { if("algorithm".equals(key.getCourse())){ return 0; }else if("computer".equals(key.getCourse())){ return 1; }else if("english".equals(key.getCourse())){ return 2; }else{ return 3; } } }
mapreduce程序:
import java.io.IOException; import java.text.DecimalFormat; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 统计每门课程的参考人数和课程平均分 * 考虑到要需求要根据课程进行分组并对平均值进行排序,这里使用自定义bean的形式来进行处理 * 因为要将数据根据课程进行分区并写入到不容的文件中,所以这里使用自定partitioner组件进行分区 * 要注意的是这时候就要设置reduceTask的个数 * */ public class CourseTwo { static Text text = new Text(); public static class MyMapper extends Mapper<LongWritable, Text, CourseBean, NullWritable>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String[] lines = value.toString().split(","); long sum = 0L; long totalTimes = lines.length-2; for (int i = 2; i < lines.length; i++) { sum += Long.parseLong(lines[i]); } //格式化平均分使用,保留一位有效小数 DecimalFormat df=new DecimalFormat(".0"); //计算某个学生在某门课程中的平均分 float avg = sum*1.0f/totalTimes; String b = df.format(avg); //构建mapper输出的key CourseBean cb = new CourseBean(lines[0],lines[1],Float.parseFloat(b)); context.write(cb, NullWritable.get()); } } public static class MyReducer extends Reducer<CourseBean, NullWritable,CourseBean, NullWritable>{ @Override protected void reduce(CourseBean key, Iterable<NullWritable> values,Context context) throws IOException, InterruptedException { //因为自定义了分区组件,自定义类型有排序规则,所以这里直接输出就可以了 for (NullWritable nullWritable : values) { context.write(key, nullWritable); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(CourseTwo.class); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(CourseBean.class); job.setOutputValueClass(NullWritable.class); //使用自定义的分区组件 job.setPartitionerClass(CoursePartitioner.class); //和自定义分区组件同时使用,根据分区的个数设置reduceTask的个数 job.setNumReduceTasks(4); FileInputFormat.setInputPaths(job, new Path("G:/files/mr/day2/q3/input")); FileOutputFormat.setOutputPath(job,new Path("G:/files/mr/day2/q3/output2") ); boolean isDone = job.waitForCompletion(true); System.exit(isDone ? 0:1); } }
4.问题三:求出每门课程参考学生成绩最高的学生的信息:课程,姓名和平均分
这里可以看组是一个分组取Top1的问题,转换到这个题目,因为每个学生在某门课程中都参考了多次,所以这里在mapper端要先求出每个学生在某门课程的最高分,将最高分及相关信息输出,在reducer阶段求出每门课程的最大值,由于题目要求输出的是课程,姓名,平均分;那么就要在mapper端将每个学生各科的平均分求出。
通过对于问题的分析,这里采用自定义输出类型的方式来处理,这里使用bean类型,首先要考虑的是学生在某门课程中的最高分,这里要进行分组求max,默认的使用自定义组件中的compareTo( )方法中的字段进行,这样多个字段进行分组造成我们在reduce阶段取值的时候使用循环的次数增加。所以我们自定义分组组件。使用课程进行分组。
自定义数据类型:CourseBean2
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class CourseBean2 implements WritableComparable<CourseBean2>{ private String course; private String name; private float avg; private long maxScore; public long getMaxScore() { return maxScore; } public void setMaxScore(long maxScore) { this.maxScore = maxScore; } public String getCourse() { return course; } public void setCourse(String course) { this.course = course; } public String getName() { return name; } public void setName(String name) { this.name = name; } public float getAvg() { return avg; } public void setAvg(float avg) { this.avg = avg; } public CourseBean2(String course, String name, float avg, long maxScore) { super(); this.course = course; this.name = name; this.avg = avg; this.maxScore = maxScore; } public CourseBean2() { } @Override public String toString() { return course+" "+name + " " + avg +" "+maxScore; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(course); out.writeUTF(name); out.writeFloat(avg); out.writeLong(maxScore); } @Override public void readFields(DataInput in) throws IOException { course = in.readUTF(); name = in.readUTF(); avg = in.readFloat(); maxScore = in.readLong(); } @Override public int compareTo(CourseBean2 o) { /*首先通过课程进行排序,课程相同的通过成绩进行排序 值得一提的是,使用自定义分组组件指定的分组字段,一定要在comparaTo方法中使用字段得而前面 eg: a a b a b c a b c d a b c d e */ int index = o.course.compareTo(this.course); if(index == 0){ long flag = o.maxScore - this.maxScore; return flag > 0L ? 1:-1; }else{ return index > 0L ? 1:-1; } } }
自定义分组组件:CourseGroupComparator
import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; /** * 自定义分组组件 * 1、如果没有定义自定义的分组组件,默认的使用comparaTo方法中的字段进行分组排序 * 这里要继承WritableComparator类,来进行序列化和比较 */ public class CourseGroupComparator extends WritableComparator{ /** * 为了解决下面出现空指针的现象,所以在类中声明一个构造函数来进行创建 */ public CourseGroupComparator() { super(CourseBean2.class,true); } /** * 如果直接这样使用会出现一个空指针的错误,主要是a,b没有进行构造,所以是空的; * 创建一个构造方法就可以进行解决 */ @Override public int compare(WritableComparable a, WritableComparable b) { CourseBean2 cb1 = (CourseBean2) a; CourseBean2 cb2 = (CourseBean2) b; //这里是根据课程名称进行处理的 return cb1.getCourse().compareTo(cb2.getCourse()); } }
mapreduce程序:
package com.jh.hive; import java.io.IOException; import java.text.DecimalFormat; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 统计每门课程的参考人数和课程平均分 * 考虑到要需求要根据课程进行分组并对平均值进行排序,这里使用自定义bean的形式来进行处理 * 因为要将数据根据课程进行分区并写入到不容的文件中,所以这里使用自定partitioner组件进行分区 * 要注意的是这时候就要设置reduceTask的个数 * */ public class CountApp3 { static class CountMapper extends Mapper<LongWritable, Text, CourseBean2, NullWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, CourseBean2, NullWritable>.Context context) throws IOException, InterruptedException { String line = value.toString(); String[] worlds = line.split(","); long sum = 0l; long ksCount = worlds.length-2; long maxScore = Long.parseLong(worlds[2]); String course = worlds[0]; String name = worlds[1]; for (int i = 2; i < worlds.length; i++) { sum += Float.parseFloat(worlds[i]); if (Long.parseLong(worlds[i])>maxScore) { maxScore = Long.parseLong(worlds[i]); } } //格式化平均分使用保留一位有效小数 DecimalFormat df = new DecimalFormat(".0"); float avg = sum*1.0f/ksCount; String format = df.format(avg); CourseBean2 courseBean = new CourseBean2(course,name,Float.parseFloat(format),maxScore); context.write(courseBean, NullWritable.get()); } } static class CountReducer extends Reducer<CourseBean2, NullWritable, CourseBean2, NullWritable>{ @Override protected void reduce(CourseBean2 arg0, Iterable<NullWritable> arg1, Reducer<CourseBean2, NullWritable, CourseBean2, NullWritable>.Context context) throws IOException, InterruptedException { int count = 0; for (NullWritable nullWritable : arg1) { count++; if (count==1) { context.write(arg0, nullWritable); } } } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); FileSystem fileSystem = FileSystem.get(conf); if (fileSystem.exists(new Path(args[1]))) { fileSystem.delete(new Path(args[1]), true); } Job job = Job.getInstance(conf); job.setJarByClass(CountApp3.class); job.setMapperClass(CountMapper.class); job.setMapOutputKeyClass(CourseBean2.class); job.setMapOutputValueClass(NullWritable.class); job.setReducerClass(CountReducer.class); job.setOutputKeyClass(CourseBean2.class); job.setOutputValueClass(NullWritable.class); job.setGroupingComparatorClass(CourseGroupComparator.class);//添加分组组件 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true)?1:0); } }
转载博客:https://blog.csdn.net/zyz_home/article/details/79937228