zoukankan      html  css  js  c++  java
  • Training Contest 1

    好像是福建省赛。

    FZU 2140 Forever 0.5

    题意:叫你找满足条件的n个点。

    做法:

    n<=3的时候,输出no。n大于3,选一个等边三角形ABC,边长为1,然后剩下的n-3的点,就可以在AC弧 和 BC弧里面找。注意n等于4的时候, p[3] = point(sqrt(3.0)/2-0.5, 0.5);这样凸包的面积刚好是5,选其他点面积会小于5。画一画图就知道了。好像题目还可以输出重复的点。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <queue>
     7 using namespace std;
     8 
     9 #define N 120
    10 #define M 200020
    11 #define LL long long
    12 #define inf 0x3f3f3f3f
    13 #define eps 1e-8
    14 
    15 int dcmp(double x){
    16     if( fabs(x) < eps ) return 0;
    17     return x < 0 ? -1 : 1;
    18 }
    19 struct point{
    20     double x, y;
    21     point(double x = 0, double y = 0) : x(x), y(y) {}
    22     point operator + (const point &b) const {
    23         return point(x + b.x, y + b.y);
    24     }
    25     point operator - (const point &b) const {
    26         return point(x - b.x, y - b.y);
    27     }
    28     bool operator < (const point &b) const {
    29         return dcmp(x - b.x) < 0 || dcmp(x - b.x) == 0 && dcmp(y - b.y) < 0;
    30     }
    31 };
    32 point p[N], ch[N];
    33 int n;
    34 double calc2(double tmp){
    35     double ret = 1 - (tmp+0.5)*(tmp+0.5);
    36     return sqrt(ret);
    37 }
    38 double calc1(double tmp){
    39     double ret = 1 - (tmp-0.5)*(tmp-0.5);
    40     return sqrt(ret);
    41 }
    42 void solve( int L, int R ){
    43     p[0] = point(0.5, 0), p[1] = point(-0.5, 0), p[2] = point(0, sqrt(3.0)/2);
    44     int cnt = 3;
    45     double len = -0.5 / (L + 1), tmp = len;
    46     for(int i = 0; i < L; ++i, tmp += len){
    47         double yy = calc1( tmp );
    48         p[cnt++] = point(tmp, yy);
    49     }
    50     len = 0.5 / (R + 1), tmp = len;
    51     for(int i = 0; i < R; ++i, tmp += len){
    52         double yy = calc2( tmp );
    53         p[cnt++] = point(tmp, yy);
    54     }
    55     if( cnt == 4 )
    56         p[3] = point(sqrt(3.0)/2-0.5, 0.5);
    57     puts( "Yes" );
    58     for(int i = 0; i < cnt; ++i){
    59         printf( "%.6lf %.6lf
    ", p[i].x, p[i].y );
    60     }
    61 }
    62 int main(){
    63     int cas, kk = 1;
    64     scanf("%d", &cas);
    65     while( cas-- ){
    66         scanf("%d", &n);
    67         if( n <= 3 ){
    68             puts( "No" ); continue;
    69         }
    70         n -= 3;
    71         int L = n / 2, R = n - L;
    72         solve(L, R);
    73     }
    74     return 0;
    75 }
    View Code

    FZU 2141 Sub-Bipartite Graph

    题意:给出N个点M条边的图,现在要从中选出两个不相交的点集,使得以这两个点集构成的原图的子图构成一个二分图,并使得边数>=M/2。

    做法:贪心,一个点一个点地染色。比如有一些染好的点,对于一个没染的点来说,它周围有x条边是连黑点,y条边是连白点,z条是没有连,那么看x > y就染白点,否则染黑点。这样其实是决定我们最后留的图里面是 留x个去掉y个,还是留y个去掉x个(z个不是在这个地方决定的,在后面别的点连这个点的时候决定的,我们就不用关心),因为我们选的是x和y中较大的那个,所以边数满足>= M/2。

     1 #include<iostream>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<cstdio>
     5 #include<string>
     6 #include<queue>
     7 #include<vector>
     8 #include<cmath>
     9 
    10 using namespace std;
    11 
    12 #define N 120
    13 #define M 10200
    14 #define LL long long
    15 #define inf 0x3f3f3f3f
    16 #define MP make_pair
    17 #define lson l, m, rt << 1
    18 #define rson m+1, r, rt << 1 | 1
    19 #define mod 9973
    20 
    21 int fst[N], vv[M], nxt[M], e, col[N];
    22 bool vis[N];
    23 void init(){
    24     memset(fst, -1, sizeof fst);
    25     memset(col, 0, sizeof col);
    26     memset(vis, 0, sizeof vis);
    27     e = 0;
    28 }
    29 void add(int u, int v){
    30     vv[e] = v, nxt[e] = fst[u], fst[u] = e++;
    31 }
    32 
    33 void dfs(int u){
    34     int aa = 0, bb = 0;
    35     for(int i = fst[u]; i != -1; i = nxt[i]){
    36         int v = vv[i];
    37         if(col[v] == 1) aa++;
    38         if(col[v] == 2) bb++;
    39     }
    40     if( aa > bb ) col[u] = 2;
    41     else col[u] = 1;
    42     vis[u] = 1;
    43     for(int i = fst[u]; i != -1; i = nxt[i]){
    44         int v = vv[i];
    45         if(!vis[v])
    46             dfs( v );
    47     }
    48 }
    49 vector<int> g[3];
    50 int main(){
    51     //freopen("tt.txt", "r", stdin);
    52     int cas;
    53     scanf("%d", &cas);
    54     while(cas--){
    55         init();
    56         g[1].clear(); g[2].clear();
    57         int n, m;
    58         scanf("%d%d", &n, &m);
    59         for(int i = 0; i < m; ++i){
    60             int u, v;
    61             scanf("%d%d", &u, &v);
    62             add(u, v), add(v, u);
    63         }
    64         for(int i = 1; i <= n; ++i)
    65             if(!vis[i])
    66                 dfs(i);
    67         for(int i = 1; i <= n; ++i)
    68             g[col[i]].push_back( i );
    69         for(int i = 1; i < 3; ++i){
    70             int tmp = g[i].size();
    71             printf("%d", tmp);
    72             for( int j = 0; j < tmp; ++j)
    73                 printf(" %d", g[i][j]);
    74             puts( "" );
    75         }
    76 
    77     }
    78     return 0;
    79 }
    View Code

    FZU 2142 Center of a Tree

    题意:给出n个点的树,问它的子树有多少和它有相同的中心。树中心是指使得距离树最远的点最近的点,中心有可能有1个或2个。

    做法:树dp,看了别人的blog,这里。先求出树的中心,然后看树的中心有几个。如果有两个,就比较简单,只要让这两个中心的子树的最长距离相等就好了。如果只有一个,这种情况要求保证最长距离为k时,选出的子树中,至少有两个中心结点的儿子节点并且它们的最长距离为k。dp2[j][0],dp2[j][1],dp2[j][2]分别表示以前 j 个儿子结点构成的子树中,长度为k的子树有0个,1个,大于等于2个,那么可以写成状态转移方程:

    dp2[j][0]=dp2[j-1][0]*(1+dp[v][i-1]);
    dp2[j][1]=dp2[j-1][1]*(1+dp[v][i-1])+dp2[j-1][0]*(dp[v][i]-dp[v][i-1]);
    dp2[j][2]=dp2[j-1][2]*(1+dp[v][i-1])+(dp2[j-1][1]+dp2[j-1][2])*(dp[v][i]-dp[v][i-1]);
    最后加上答案就行了。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cmath>
      4 #include <algorithm>
      5 #include <cstring>
      6 #include <queue>
      7 
      8 using namespace std;
      9 
     10 #define N 1010
     11 #define M 2020
     12 #define LL long long
     13 #define inf 0x3f3f3f3f
     14 #define lson id << 1, l, m
     15 #define rson id << 1 | 1, m + 1, r
     16 #define mod 10086
     17 
     18 int fst[N], nxt[M], vv[M], e;
     19 void add(int u, int v){
     20     vv[e] = v, nxt[e] = fst[u], fst[u] = e++;
     21 }
     22 int son[N], dp[N][N], milen, res[2], dp2[N][4], g[N], kk = 1;
     23 void dfs1(int u, int p){    //dp[u][0]表示u所在的子树的最长的距离是多少,dp[u][1]表示u所在的子树的次长距离是多少
     24     dp[u][0] = dp[u][1] = 0;
     25     son[u] = 0;
     26     for(int i = fst[u]; i != -1; i = nxt[i]){
     27         int v = vv[i];
     28         if(v == p) continue;
     29         dfs1(v, u);
     30         if(dp[v][0] + 1 > dp[u][0]){
     31             dp[u][1] = dp[u][0];
     32             dp[u][0] = dp[v][0] + 1;
     33             son[u] = v;
     34         }
     35         else if(dp[v][0] + 1 > dp[u][1])
     36             dp[u][1] = dp[v][0] + 1;
     37     }
     38 }
     39 void dfs2(int u, int p, int mxlen){   //求树的中心。
     40     int tmp = max(mxlen, dp[u][0]);
     41     if(tmp < milen){
     42         milen = tmp;
     43         res[0] = u;
     44         res[1] = -1;
     45     }
     46     else if(tmp == milen)
     47         res[1] = u;
     48     for(int i = fst[u]; i != -1; i = nxt[i]){
     49         int v = vv[i];
     50         if(v == p) continue;
     51         if(v == son[u])
     52             tmp = dp[u][1] + 1;
     53         else tmp = dp[u][0] + 1;
     54         dfs2(v, u, max(mxlen + 1, tmp));
     55     }
     56 }
     57 void init(){
     58     e = 0, milen = inf;
     59     memset(fst, -1, sizeof fst);
     60     memset(son, 0, sizeof son);
     61 }
     62 int n;
     63 void dfs(int u, int p){    //dp[i][j]表示结点 i 在的子树中,距离i距离不超过j的方案数
     64     for(int i = 0; i <= n; ++i)
     65         dp[u][i] = 1;
     66     for(int i = fst[u]; i != -1; i = nxt[i]){
     67         int v = vv[i];
     68         if(v == p) continue;
     69         dfs(v, u);
     70         for(int i = 1; i <= n; ++i)
     71             dp[u][i] = (dp[u][i] + dp[u][i] * dp[v][i-1]) % mod;
     72     }
     73 }
     74 int mul[N];
     75 void solve(){
     76     dfs(res[0], res[1]);
     77     int ans = 1;
     78     if(res[1] != -1){  //如皋有两个中心,那么从两个中心点选距离为i的方案数。
     79         dfs(res[1], res[0]);
     80         for(int i = 1; i <= n; ++i){
     81             int tmp1 = dp[res[0]][i] - dp[res[0]][i-1];
     82             int tmp2 = dp[res[1]][i] - dp[res[1]][i-1];
     83             ans = (ans + tmp1 * tmp2) % mod;
     84         }
     85     }
     86     else{ //如皋只有一个中心。考虑res[0]的儿子结点。
     87         int cnt = 0;
     88         for(int i = fst[res[0]]; i != -1; i = nxt[i])
     89             g[++cnt] = vv[i];
     90         if(cnt > 1) ans = (ans + mul[cnt] - cnt - 1) % mod;
     91         dp2[0][0] = 1, dp2[0][1] = dp2[0][2] = 0;
     92         for(int i = 1; i <= n; ++i){
     93             for(int j = 1; j <= cnt; ++j){
     94                 dp2[j][0] = dp2[j-1][0] * (1 + dp[g[j]][i-1]) % mod;
     95                 dp2[j][1] = dp2[j-1][1] * (1 + dp[g[j]][i-1]) % mod + dp2[j-1][0] * (dp[g[j]][i] - dp[g[j]][i-1]) % mod;
     96                 dp2[j][2] = dp2[j-1][2] * (1 + dp[g[j]][i-1]) % mod + (dp2[j-1][1] + dp2[j-1][2]) * (dp[g[j]][i] - dp[g[j]][i-1]) % mod;
     97                 dp2[j][1] %= mod, dp2[j][2] %= mod;
     98             }
     99             ans = (ans + dp2[cnt][2]) % mod;
    100         }
    101     }
    102     ans = (ans % mod + mod) % mod;
    103     printf("Case %d: %d
    ", kk++, ans);
    104 }
    105 int main(){
    106    // freopen("tt.txt", "r", stdin);
    107     int cas;
    108     mul[0] = 1;
    109     for(int i = 1; i < N; ++i)
    110         mul[i] = mul[i-1] * 2 % mod;
    111     scanf("%d", &cas);
    112     while(cas--){
    113         init();
    114         scanf("%d", &n);
    115         for(int i = 1; i < n; ++i){
    116             int u, v;
    117             scanf("%d%d", &u, &v);
    118             add(u, v), add(v, u);
    119         }
    120         dfs1(1, -1);
    121         dfs2(1, -1, 0);
    122         solve();
    123     }
    124 }
    View Code

    FZU 2143 Board Game

    费用流。小坤子a了,好牛逼。

      1 /*
      2 #include <iostream>
      3 #include <cstdio>
      4 #include <cstring>
      5 #include <algorithm>
      6 #include <queue>
      7 using namespace std;
      8 
      9 #define N 120
     10 #define M 200020
     11 #define LL long long
     12 #define inf 0x3f3f3f3f
     13 #define eps 1e-8
     14 
     15 double x[mnx], y[mnx], n;
     16 void solve( int L, int R ){
     17     x[0] = 0.5, y[0] = 0;
     18     x[1] = -0.5, y[0] = 0;
     19     x[2] = 0, y[2] = sqrt(3.0) / 2;
     20     double len = 0.5 / ( L + 1 );
     21     for( int i = 0; i < L; ++i )
     22 }
     23 int main(){
     24     int cas, kk = 1;
     25     scanf("%d", &cas);
     26     while( cas-- ){
     27         scanf("%d", &n);
     28         if( n <= 3 ){
     29             puts( "No" ); continue;
     30         }
     31         puts( "Yes" );
     32         n -= 3;
     33         int L = n / 2, R = n - L;
     34         solve();
     35     }
     36     return 0;
     37 }
     38 */
     39 
     40 
     41 #include <iostream>
     42 #include <cstdio>
     43 #include <cstring>
     44 #include <algorithm>
     45 #include <queue>
     46 using namespace std;
     47 
     48 #define N 120
     49 #define M 200020
     50 #define LL long long
     51 #define inf 0x3f3f3f3f
     52 #define eps 1e-8
     53 
     54 
     55 struct edge {
     56     int u, v, cap, flow, cost, nxt;
     57     void set(int _u, int _v, int _cap, int _flow, int _cost, int _nxt) {
     58         u = _u, v = _v, cap = _cap, flow = _flow, cost = _cost, nxt = _nxt;
     59     }
     60 };
     61 
     62 struct mcmf {
     63     int fst[N], cc, d[N], p[N], a[N];
     64     edge e[M];
     65     bool in[N];
     66 
     67     void init() {
     68         memset(fst, -1, sizeof(fst)); cc = 0;
     69     }
     70     void add(int u, int v, int cap, int cost) {
     71         e[cc].set(u, v, cap, 0, cost, fst[u]), fst[u] = cc++;
     72         e[cc].set(v, u, 0, 0, -cost, fst[v]), fst[v] = cc++;
     73     }
     74     int spfa(int s, int t, int &mf, int &mc) {
     75         memset(d, 0x3f, sizeof(d));
     76         memset(in, 0, sizeof(in));
     77         d[s] = 0, a[s] = inf, in[s] = 1, p[s] = 0;
     78         queue<int> q; q.push(s);
     79         while(!q.empty()) {
     80             int u = q.front(); q.pop(); in[u] = 0;
     81             for(int i = fst[u]; ~i; i = e[i].nxt) {
     82                 int v = e[i].v;
     83                 if(e[i].cap > e[i].flow && d[v] > d[u] + e[i].cost) {
     84                     d[v] = d[u] + e[i].cost, p[v] = i;
     85                     a[v] = min(a[u], e[i].cap - e[i].flow);
     86                     if(!in[v]) in[v] = 1, q.push(v);
     87                 }
     88             }
     89         }
     90         if(d[t] == inf) return 0;
     91         mf += a[t], mc += a[t] * d[t];
     92         int u = t;
     93         while(u != s) {
     94             e[p[u]].flow += a[t], e[p[u] ^ 1].flow -= a[t];
     95             u = e[p[u]].u;
     96         }
     97         return 1;
     98     }
     99     int go(int s, int t) {
    100         int ret = 0, mf = 0, mc = 0;
    101         while(spfa(s, t, mf, mc)) {
    102             ret = min(ret, mc);
    103         }
    104         return ret;
    105     }
    106 }go;
    107 
    108 int a[N][N];
    109 int n, m, k;
    110 int s, t;
    111 int dir[4][2] = {0, 1, 1, 0, 0, -1, -1, 0};
    112 
    113 int code(int x, int y) {
    114     return (x - 1) * m + y;
    115 }
    116 int main() {
    117     //freopen("tt.txt", "r", stdin);
    118     int cas, kk = 0;
    119     scanf("%d", &cas);
    120     while(cas--) {
    121         scanf("%d%d%d", &n, &m, &k);
    122         go.init();
    123         int sum = 0;
    124         for(int i = 1; i <= n; ++i) {
    125             for(int j = 1; j <= m; ++j) {
    126                 scanf("%d", &a[i][j]);
    127                 sum += a[i][j] * a[i][j];
    128             }
    129         }
    130         s = 0, t = n * m + 1;
    131         for(int i = 1; i <= n; ++i) {
    132             for(int j = 1; j <= m; ++j) {
    133                 int x = code(i, j);
    134                 if((i + j) % 2 == 0) {
    135                     for(int u = 1; u <= k; ++u) {
    136                         go.add(s, x, 1, 2 * u - 1 - 2 * a[i][j]);
    137                     }
    138                     for(int u = 0; u < 4; ++u) {
    139                         int di = i + dir[u][0];
    140                         int dj = j + dir[u][1];
    141                         if(di < 1 || dj < 1 || di > n || dj > m) continue;
    142                         int y = code(di, dj);
    143                         go.add(x, y, k, 0);
    144                     }
    145                 }
    146                 else {
    147                     for(int u = 1; u <= k; ++u)
    148                         go.add(x, t, 1, 2 * u - 1 - 2 * a[i][j]);
    149                 }
    150             }
    151         }
    152         printf("Case %d: %d
    ", ++kk, sum + go.go(s, t));
    153 
    154     }
    155     return 0;
    156 }
    View Code

    FZU 2144 Shooting Game

    题意:空间内有若干只蚊子,蚊子会朝着一个方向不停地飞,一个人站在原点拿着一把枪,他可以在任何时间开枪,每次他开枪,周围半径为r的球以内的蚊子会全部被射死,问他最多能射死多少蚊子,以及射死这么多蚊子所需用的最短时间。

    做法:解二元一次方程。求出蚊子飞进球和飞出球的时间,然后排序,求有多少个不相交的区间。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <queue>
     7 using namespace std;
     8 
     9 #define N 100020
    10 #define M 2020
    11 #define LL long long
    12 #define inf 0x3f3f3f3f
    13 #define eps 1e-8
    14 #define mod 10086
    15 
    16 double RR;
    17 int dcmp(double x){
    18     if( fabs(x) < eps ) return 0;
    19     return x < 0 ? -1 : 1;
    20 }
    21 struct node{
    22     double L, R;
    23     bool operator < (const node &b) const {
    24         return dcmp(R - b.R) < 0;
    25     }
    26 }g[N];
    27 void calc( double a, double b, double c, double &ans1, double &ans2 ){
    28     double tmp = b * b - 4 * a * c;
    29     if( dcmp(tmp) <= 0 ){
    30         ans1 = ans2 = -1; return ;
    31     }
    32     tmp = sqrt(tmp);
    33     ans1 = ( -b - tmp ) / 2 / a, ans2 = ( -b + tmp ) / 2 / a;
    34 }
    35 double x, y, z, xx, yy, zz;
    36 int readint() {
    37     char c;
    38     bool f = 0;
    39     while((c = getchar()) && !(c >= '0' && c <= '9') && c != '-');
    40     int ret;
    41     if(c == '-') ret = 0, f = 1;
    42     else
    43         ret = c - '0';
    44     while((c = getchar()) && c >= '0' && c <= '9')
    45         ret = ret * 10 + c - '0';
    46     if(f) ret = -ret;
    47     return ret;
    48 }
    49 int main(){
    50     //freopen("tt.txt", "r", stdin);
    51     int cas, kk = 1;
    52     scanf("%d", &cas);
    53     while(cas--){
    54         int n, cnt = 0;
    55         scanf("%d", &n);
    56         scanf("%lf", &RR);
    57         for(int i = 0; i < n; ++i){
    58             x = readint();
    59             y = readint();
    60             z = readint();
    61             xx = readint();
    62             yy = readint();
    63             zz = readint();
    64             //printf("%lf %lf %lf
    ", x, y, z);
    65             double a = xx * xx + yy * yy + zz * zz;
    66             double b = 2 * x * xx + 2 * y * yy + 2 * z * zz;
    67             double c = x * x + y * y + z * z - RR * RR;
    68             double ans1, ans2;
    69             calc(a, b, c, ans1, ans2);
    70             if( dcmp(ans1 + 1) == 0 && dcmp(ans2 + 1) == 0 ) continue;
    71             if( ans2 < 0 ) continue;
    72             if( ans1 < 0 )
    73                 ans1 = 0;
    74             g[cnt].L = ans1, g[cnt++].R = ans2;
    75         }
    76         sort( g, g + cnt );
    77         int ans = 0;
    78         double pre = -1;
    79         for(int i = 0; i < cnt; ++i){
    80             if(g[i].L > pre)
    81                 pre = g[i].R, ans++;
    82         }
    83         printf("Case %d: %d %d
    ", kk++, cnt, ans);
    84     }
    85     return 0;
    86 }
    View Code

    FZU 2145 Rock-Paper-Scissors Game

    概率题,并不会。

    接下来三题好像都挺水的。

    FZU 2146 Easy Game

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <string>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <cstring>
     7 #include <vector>
     8 #include <map>
     9 using namespace std;
    10 #define N ( 100000 + 10 )
    11 #define M ( 400000 + 10 ) 
    12 #define LL long long
    13 #define inf 0x3f3f3f3f
    14 #define lson id << 1, l, m 
    15 #define rson id << 1 | 1, m + 1, r 
    16 #define mod 1000
    17 
    18 
    19 char s[20000];
    20 
    21 int main () {
    22     int T, cas = 1;
    23     scanf("%d", &T );
    24     while( T-- ) {
    25         scanf("%s" , s );
    26         int len = strlen( s );
    27         printf("Case %d: ", cas ++ );
    28         if( len % 2 ) puts("Odd");
    29         else puts("Even");
    30     }
    31 }
    View Code

    FZU 2147 A-B Game

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 #define N 120
     8 #define M 200020
     9 #define LL long long
    10 #define inf 0x3f3f3f3f
    11 #define eps 1e-8
    12 
    13 int main(){
    14     int  cas, kk = 1;
    15     scanf("%d", &cas);
    16     while( cas-- ){
    17         LL B, A;
    18         cin>>A>>B;
    19         int ans = 0;
    20         while( A > B ) {
    21             if( A & 1 ) A = A - A / 2;
    22             else A = A - A / 2 + 1;
    23             ++ans;
    24         }
    25         printf("Case %d: ", kk++ );
    26         printf("%d
    ", ans );
    27     }
    28     return 0;
    29 }
    View Code

    FZU 2148 Moon Game

    题意:给n(n<=30)个点,叫你求有多少组 4个点同时这四个点组成是图形是个凸包。

    做法:暴力。n的4次方

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <algorithm>
      6 #include <queue>
      7 using namespace std;
      8 
      9 #define N 120
     10 #define M 200020
     11 #define LL long long
     12 #define inf 0x3f3f3f3f
     13 #define eps 1e-8
     14 /*
     15 double x[N], y[N];
     16 int n;
     17 double calc2(double tmp){
     18     double ret = 1 - (tmp+0.5)*(tmp+0.5);
     19     return sqrt(ret);
     20 }
     21 double calc1(double tmp){
     22     double ret = 1 - (tmp-0.5)*(tmp-0.5);
     23     return sqrt(ret);
     24 }
     25 void solve( int L, int R ){
     26     x[0] = 0.5, y[0] = 0;
     27     x[1] = -0.5, y[0] = 0;
     28     x[2] = 0, y[2] = sqrt(3.0) / 2;
     29     int cnt = 3;
     30     double len = -0.5 / (L + 1), tmp = len;
     31     for(int i = 0; i < L; ++i, tmp += len){
     32         double yy = calc1( tmp );
     33         x[cnt] = tmp, y[cnt++] = yy;
     34     }
     35     len = 0.5 / (R + 1), tmp = len;
     36     for(int i = 0; i < R; ++i, tmp += len){
     37         double yy = calc2( tmp );
     38         x[cnt] = tmp, y[cnt++] = yy;
     39     }
     40     for(int i = 0; i < cnt; ++i){
     41         printf( "%.6lf %.6lf
    ", x[i], y[i] );
     42     }
     43 }
     44 int main(){
     45     int cas, kk = 1;
     46     scanf("%d", &cas);
     47     while( cas-- ){
     48         scanf("%d", &n);
     49         if( n <= 3 ){
     50             puts( "No" ); continue;
     51         }
     52         puts( "Yes" );
     53         n -= 3;
     54         int L = n / 2, R = n - L;
     55         solve(L, R);
     56     }
     57     return 0;
     58 }
     59 */
     60 struct point{
     61     int x, y;
     62     point(int x = 0, int y = 0) : x(x), y(y) {}
     63     point operator + (const point &b) const {
     64         return point(x + b.x, y + b.y);
     65     }
     66     point operator - (const point &b) const {
     67         return point(x - b.x, y - b.y);
     68     }
     69     bool operator < (const point &b) const {
     70         return x - b.x < 0 || x - b.x == 0 && y - b.y < 0;
     71     }
     72     bool operator == (const point &b) const {
     73         return x - b.x == 0 && y - b.y == 0;
     74     }
     75 };
     76 int cross(point a, point b){
     77     return a.x * b.y - a.y * b.x;
     78 }
     79 int convex_hull(point *p, int n, point *ch){
     80     int m = 0;
     81     sort(p, p + n);
     82     for(int i = 0; i < n; ++i){
     83         while(m > 1 && cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--;
     84         ch[m++] = p[i];
     85     }
     86     int k = m;
     87     for(int i = n-2; i >= 0; --i){
     88         while(m > k && cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0 ) m--;
     89         ch[m++] = p[i];
     90     }
     91     if(n > 1) m--;
     92     return m;
     93 }
     94 point p[N], ch[N], pp[N];
     95 int main(){
     96     //freopen("tt.txt", "r", stdin );
     97     int cas, kk = 1;
     98     scanf("%d", &cas);
     99     while(cas--){
    100         int n;
    101         scanf("%d", &n);
    102         for(int i = 0; i < n; ++i)
    103             scanf("%d%d", &p[i].x, &p[i].y);
    104         sort(p, p+n);
    105         n = unique(p, p+n) - p;
    106         int ans = 0;
    107         for(int i = 0; i < n; ++i){
    108             pp[0] = p[i];
    109             for(int j = i+1; j < n; ++j){
    110                 pp[1] = p[j];
    111                 for(int k = j+1; k < n; ++k){
    112                     pp[2] = p[k];
    113                     for(int u = k+1; u < n; ++u){
    114                         pp[3] = p[u];
    115                         int all = convex_hull(pp, 4, ch);
    116                         if(all == 4) ans++;
    117                     }
    118                 }
    119             }
    120         }
    121         printf("Case %d: %d
    ", kk++, ans);
    122     }
    123     return 0;
    124 }
    View Code

    FZU 2149 Reverse Game

    小坤子的dp+矩阵加速被卡了,最后一分钟写出来,立刻过了样例,还以为绝杀了,结果TLE,应该卡常数了。

    FZU 2150 Fire Game

    题意:n*m的图,'.'表示空地,’#‘表示草堆,两个人任选两个草堆(可以选一样的)开始烧,问能不能把所有的草堆烧完,以及烧完的最短时间。

    做法:枚举从哪两个起点开始烧,bfs就好。(应该是酱紫做,纬哥敲的)

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 #define N 120
     8 #define M 200020
     9 #define LL long long
    10 #define inf 0x3f3f3f3f
    11 #define eps 1e-8
    12 
    13 char g[33][33];
    14 
    15 int ans;
    16 int Qx[10000], Qy[10000];
    17 int d[22][22];
    18 int dx[] = { -1, 1, 0, 0 };
    19 int dy[] = { 0, 0, -1, 1 };
    20 int n, m;
    21 void bfs ( int x1, int y1, int x2, int y2 ) {
    22     int head = 0, tail = 0;
    23     memset( d, 0x3f, sizeof( d ));
    24     d[x1][y1] = d[x2][y2] = 0;
    25     Qx[tail] = x1, Qy[tail++] =y1;
    26     Qx[tail] = x2; Qy[tail++] = y2;
    27     while( head < tail ) {
    28         int nx = Qx[head], ny = Qy[head++];
    29         for( int i = 0; i < 4; ++i ) {
    30             int xx = dx[i] + nx, yy = dy[i] + ny;
    31             if( xx < 0 || xx >= n || yy < 0 || yy >= m) continue;
    32             if( d[xx][yy] != inf ) continue;
    33             if( g[xx][yy] == '.' ) continue;
    34             d[xx][yy] = d[nx][ny] + 1;
    35             Qx[tail] = xx, Qy[tail++] = yy;
    36         }
    37     }
    38 }
    39 
    40 void check () {
    41     int tmp = 0;
    42     for( int i = 0; i < n; ++i ) {
    43         for( int j = 0; j < m; ++j ) {
    44             if( g[i][j] == '.' ) continue;
    45             tmp = max( d[i][j], tmp );
    46         }
    47     }
    48     ans = min (ans, tmp );
    49 }
    50 
    51 int main(){
    52     int T, cas = 1;
    53     //freopen("tt.txt", "r", stdin );
    54     scanf("%d", &T );
    55 
    56     while( T-- ){
    57         ans = inf;
    58         scanf("%d%d", &n, &m );
    59         for( int i = 0; i < n; ++i )
    60             scanf("%s", g[i] );
    61 
    62         for( int i = 0; i < n; ++i ) {
    63             for( int j = 0; j < m; ++j ) {
    64                 if( g[i][j] == '.' ) continue;
    65                 for( int k = 0; k < n; ++k ) {
    66                     for( int z = 0; z < m; ++z ) {
    67                         if( g[k][z] == '.' ) continue;
    68                         bfs( i, j, k, z );
    69                         check();
    70                     }
    71                 }
    72             }
    73         }
    74         printf("Case %d: ", cas ++ );
    75         if( ans == inf ) puts("-1" );
    76         else printf("%d
    ", ans );
    77     }
    78     return 0;
    79 }
    View Code

    FZU 2151 OOXX Game

    太水了,不贴代码了

  • 相关阅读:
    selenium(七)expected_conditions EC
    Alpine Linux常用命令
    python logging模块,升级print调试到logging。
    用flask Flask-RESTful,实现RESTful API
    python,判断操作系统是windows,linux
    在docker hub,用github的dockerfile自动生成docker镜像
    解决pycharm问题:module 'pip' has no attribute 'main'
    alpine linux docker 安装 lxml出错的解决办法。
    (转载)服务端技术选型
    maven的pom文件
  • 原文地址:https://www.cnblogs.com/LJ-blog/p/4421160.html
Copyright © 2011-2022 走看看