zoukankan      html  css  js  c++  java
  • Prime Path(素数筛选+bfs)

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9519   Accepted: 5458

    Description

    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
    — It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
    — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
    — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
    — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
    — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
    — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. 

    Now, the minister of finance, who had been eavesdropping, intervened. 
    — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
    — Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
    — In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 
    1033
    1733
    3733
    3739
    3779
    8779
    8179
    The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

    Input

    One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

    Output

    One line for each case, either with a number stating the minimal cost or containing the word Impossible.

    Sample Input

    3
    1033 8179
    1373 8017
    1033 1033

    Sample Output

    6
    7
    0
    题意:给定两个四位数,求从前一个数变到后一个数最少需要几步,改变的原则是每次只能改变某一位上的一个数,而且每次改变得到的必须是一个素数;

    思路:将四位数以内的素数筛选出来,bfs时,枚举四位数的每一位上的每一个数;
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<queue>
      4 using namespace std;
      5 
      6 struct node
      7 {
      8     int num;
      9     int step;
     10 };
     11 queue<struct node>que;
     12 int n,m,flag;
     13 bool p[10010],vis[10010];
     14 
     15 //素数筛;
     16 void prime_search()
     17 {
     18     memset(p,1,sizeof(p));
     19     for(int i = 4; i <= 10000; i+=2)
     20         p[i] = 0;
     21     for(int i = 3; i <= 100; i++)
     22     {
     23         if(p[i])
     24         {
     25             for(int j = i+i; j <= 10000; j += i)
     26                 p[j] = 0;
     27         }
     28     }
     29 }
     30 
     31 int bfs()
     32 {
     33     while(!que.empty())
     34         que.pop();
     35     que.push((struct node){n,0});
     36     vis[n] = 1;
     37     int res,tmp,r,t,s;
     38     while(!que.empty())
     39     {
     40         struct node u = que.front();
     41         que.pop();
     42         if(u.num == m)
     43             return u.step;
     44             
     45         //枚举个位数
     46         r = u.num%10;
     47         for(int k = -9; k <= 9; k++)
     48         {
     49             t = r+k;
     50             if(t >= 0 && t <= 9)
     51             {
     52                 res = (u.num/10)*10+t;
     53                 if(p[res] && !vis[res])
     54                 {
     55                     que.push((struct node){res,u.step+1});
     56                     vis[res] = 1;
     57                 }
     58             }
     59         }
     60         
     61         //枚举十位数
     62         tmp = u.num/10;
     63         r = tmp%10;
     64         s = tmp/10;
     65         for(int k = -9; k <= 9; k++)
     66         {
     67             t = r+k;
     68             if(t >= 0 && t <= 9)
     69             {
     70                 res = (s*10+t)*10+u.num%10;
     71                 if(p[res] && !vis[res])
     72                 {
     73                     que.push((struct node){res,u.step+1});
     74                     vis[res] = 1;
     75                 }
     76             }
     77         }
     78         
     79         //枚举百位数
     80         int tmp = u.num/100;
     81         r = tmp%10;
     82         s = tmp/10;
     83         for(int k = -9; k <= 9; k++)
     84         {
     85             t = r+k;
     86             if(t >= 0 && t <= 9)
     87             {
     88                 res = (s*10+t)*100+u.num%100;
     89                 if(p[res] && !vis[res])
     90                 {
     91                     que.push((struct node){res,u.step+1});
     92                     vis[res] = 1;
     93                 }
     94             }
     95         }
     96 
     97         //枚举千位数
     98         r = u.num/1000;
     99         for(int k = -9; k <= 9; k++)
    100         {
    101             t = r+k;
    102             if(t >0 && t <= 9)
    103             {
    104                 res = t*1000+u.num%1000;
    105                 if(p[res] && !vis[res])
    106                 {
    107                     que.push((struct node){res,u.step+1});
    108                     vis[res] = 1;
    109                 }
    110             }
    111         }
    112     }
    113 }
    114 int main()
    115 {
    116     int test;
    117     prime_search();
    118     scanf("%d",&test);
    119     while(test--)
    120     {
    121         memset(vis,0,sizeof(vis));
    122         scanf("%d %d",&n,&m);
    123         int ans = bfs();
    124         printf("%d
    ",ans);
    125     }
    126     return 0;
    127 }
    View Code
  • 相关阅读:
    window.open打开页面及页面大小设置
    java--->Stack的使用
    java简单实现直接运算表达式
    idea--->tomcat控制台乱码
    多线程--->线程的几种基本实现
    java--->读取wsdl方法(二)
    java--->wsdl的简单使用(spring+cxf)
    ActiveMQ(学习1)
    基本类型和包装类型的区别
    弄懂JDK、JRE和JVM到底是什么
  • 原文地址:https://www.cnblogs.com/LK1994/p/3269638.html
Copyright © 2011-2022 走看看