zoukankan      html  css  js  c++  java
  • Balance(01背包)

    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 9163   Accepted: 5617

    Description

    Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
    It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
    Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced. 

    Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
    It is guaranteed that will exist at least one solution for each test case at the evaluation. 

    Input

    The input has the following structure: 
    • the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
    • the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
    • on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

    Output

    The output contains the number M representing the number of possibilities to poise the balance.

    Sample Input

    2 4	
    -2 3 
    3 4 5 8
    

    Sample Output

    2

    没想到是个背包题,还是01背包,看看大神的讲解吧。

    题目大意:

    有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。

    其中可以把天枰看做一个以x轴0点作为平衡点的横轴

    输入:

    2 4 //C 钩子数 与 G钩码数

    -2 3 //负数:左边的钩子距离天平中央的距离;正数:右边的钩子距离天平中央的距离c[k]

    3 4 5 8 //G个重物的质量w[i]

    dp思路:

    每向天平中方一个重物,天平的状态就会改变,而这个状态可以由若干前一状态获得。

    首先定义一个平衡度j的概念

    当平衡度j=0时,说明天枰达到平衡,j>0,说明天枰倾向右边(x轴右半轴),j<0则相反

    那么此时可以把平衡度j看做为衡量当前天枰状态的一个值

    因此可以定义一个 状态数组dp[i][j],意为在挂满前i个钩码时,平衡度为j的挂法的数量。

    由于距离c[i]的范围是-15~15,钩码重量的范围是1~25,钩码数量最大是20

    因此最极端的平衡度是所有物体都挂在最远端,因此平衡度最大值为j=15*20*25=7500。原则上就应该有dp[ 1~20 ][-7500 ~ 7500 ]。

    因此为了不让下标出现负数,做一个处理,使使得数组开为 dp[1~20][0~15000],则当j=7500时天枰为平衡状态

    那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的 力臂

    力臂=重量 *臂长 = w[i]*c[k]

    那么若在挂上第i个砝码之前,天枰的平衡度为j

       (换言之把前i-1个钩码全部挂上天枰后,天枰的平衡度为j)

    则挂上第i个钩码后,即把前i个钩码全部挂上天枰后,天枰的平衡度 j=j+ w[i]*c[k]

       其中c[k]为天枰上钩子的位置,代表第i个钩码挂在不同位置会产生不同的平衡度

    不难想到,假设 dp[i-1][j] 的值已知,设dp[i-1][j]=num

                   (即已知把前i-1个钩码全部挂上天枰后得到状态j的方法有num次)

       那么dp[i][ j+ w[i]*c[k] ] = dp[i-1][j] = num

    (即以此为前提,在第k个钩子挂上第i个钩码后,得到状态j+ w[i]*c[k]的方法也为num次)

    想到这里,利用递归思想,不难得出 状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

    有些前辈推导方式稍微有点不同,得到的 状态方程为dp[i][j] =∑(dp[i - 1][j - c[i] * w[i]])

    其实两条方程是等价的,这个可以简单验证出来,而且若首先推导到第二条方程,也必须转化为第一条方程,这是为了避免下标出现负数

     

    结论:

    最终转化为01背包问题

    状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

    初始化:dp[0][7500] = 1;   //不挂任何重物时天枰平衡,此为一个方法

     1 #include<stdio.h>
     2 #include<string.h>
     3 
     4 int dp[22][15001];
     5 int main()
     6 {
     7     int c,g;
     8     int pos[22],w[22];
     9     scanf("%d %d",&c,&g);
    10     for(int i = 1; i <= c; i++)
    11         scanf("%d",&pos[i]);
    12     for(int i = 1; i <= g; i++)
    13         scanf("%d",&w[i]);
    14     memset(dp,0,sizeof(dp));
    15     dp[0][7500] = 1;
    16     for(int i = 1; i <= g; i++)
    17     {
    18         for(int j = 0; j <= 15000; j++)
    19         {
    20             if(dp[i-1][j])
    21             {
    22                 for(int k = 1; k <= c; k++)
    23                     dp[i][j+w[i]*pos[k]] += dp[i-1][j];
    24             }
    25         }
    26     }
    27     printf("%d
    ",dp[g][7500]);
    28     return 0;
    29 }
    View Code
  • 相关阅读:
    一些C++11语言新特性
    项目管理计划应该包括哪些内容
    真相令人震惊!为什么越有钱的人,欠的钱越多?
    80后小伙返乡创业种植中药材,带领乡亲们脱贫致富
    Tableau
    知识点汇总
    决策树分析、EMV(期望货币值)
    信息系统项目管理师60天冲刺复习计划,2019下半年高项冲刺计划
    【系统分析师之路】系统分析师备考计划
    有一种规律:“劣币驱逐良币”,“坏人淘汰好人”(深度)
  • 原文地址:https://www.cnblogs.com/LK1994/p/3278655.html
Copyright © 2011-2022 走看看