zoukankan      html  css  js  c++  java
  • GCC

    题目描述

    The GNU Compiler Collection (usually shortened to GCC) is a compiler system produced by the GNU Project supporting various programming languages.  But it doesn’t contains the math operator “!”.

    In mathematics the symbol represents the factorial operation. The expression n! means "the product of the integers from 1 to n". For example, 4! (read four factorial) is 4 × 3 × 2 × 1 = 24. (0! is defined as 1, which is a neutral element in multiplication, not multiplied by anything.)

    We want you to help us with this formation: (0! + 1! + 2! + 3! + 4! + ... + n!)%m. 

    输入

    The first line consists of an integer T, indicating the number of test cases.

    Each test on a single consists of two integer n and m. 

    0 < T <= 20
    0 <= n < 10100 (without leading zero) 
    0 < m < 1000000 

    输出

    Output the answer of (0! + 1! + 2! + 3! + 4! + ... + n!)%m. 

    示例输入

    1 
    10 861017 
    

    示例输出

    593846

    题意:输入n和m,计算(0! + 1! + 2! + 3! + 4! + ... + n!)%m的值。。。
    思路:因为看到 n 最大是10^100,顿时感觉很蒙,可是,只要仔细想想,n这么大是唬人的。因为只要n>=m时,它的阶乘对m取余都是0,也就相当于 (0! + 1! + 2! + 3! + 4! + ... + (m-1)!)%m.
       若原本n就小于m,直接算就行了。就是分步取余。
     1 #include<stdio.h>
     2 #include<string.h>
     3 
     4 int MOD(int n,int m)
     5 {
     6     long long ans = 1,tmp = 1;
     7     int num;
     8     for(num = 1; num <= n; num++)
     9     {
    10         tmp = (tmp*(num%m))%m;
    11         ans = (ans+tmp)%m;
    12     }
    13     ans = ans%m;
    14     return ans;
    15 }
    16 
    17 int main()
    18 {
    19     int test;
    20     char s[110];
    21     int n,m,ans;
    22     scanf("%d",&test);
    23     while(test--)
    24     {
    25         scanf("%s %d",s,&m);
    26         if(m == 1)
    27         {
    28             printf("0
    ");
    29             continue;
    30         }
    31         n = 0;
    32         for(int i = 0; s[i]; i++)
    33         {
    34             n = n*10+s[i]-'0';
    35             if(n >= m)
    36             {
    37                 n = m-1;
    38                 break;
    39             }
    40         }
    41         ans = MOD(n,m);
    42         printf("%d
    ",ans);
    43     }
    44     return 0;
    45 }
    View Code

     
  • 相关阅读:
    (转).NET Compact Framework使用P/Invoke服务
    C#编码好习惯
    有些东西必须时刻放在心上!
    我是这样的人吗?是!!!!!!!!!
    经济学家张五常教大家四招读书的方法 (转)
    #在宏中的某些用法(转)
    牛人太强了,我该怎么努力呀?
    利用增强限制条件来求解问题
    努力呀!即将面临的deadline
    volume visualization reserach时刻记在心的要点
  • 原文地址:https://www.cnblogs.com/LK1994/p/3405467.html
Copyright © 2011-2022 走看看