三个限制都可以数位 $dp$ , $dfs$ 是维护当前位,之前各位总和模 $7$ 意义下的值,之前填的数模 $7$ 意义下的值,是否贴着限制
主要现在求的是各个合法数的平方的和,比较恶心
开一个结构体维护一下三个东西,合法数的个数,合法数的和,合法数的平方和
前两个好维护,平方和发现其实可以拆开,比如下一层 $dfs$ 传上来的和为 $x$ ,当前位填的数为 $k$ ,考虑当前所有合法数的平方和看成每一个合法数的平方的和
设下一层某一个合法数传上来的值为 $y$,那么当前层的值即为
$10^p cdot k + y$ ,平方后即为 $10^{2p} cdot k^2 + y^2 + 2ky cdot 10^p$
发现所有的 $y^2$ 加起来以后其实就是下一层的合法数的平方和
对于 $2ky cdot 10^p$ ,把 $2k cdot 10^p$ 提出来,那么也可以把所有 $y$ 加起来即为下一层的合法数的和
对于 $10^{2p} cdot k^2$ ,因为加了下一层合法数的个数次,那么贡献即为下一层合法数数量乘 $10^{2p} cdot k^2$
所以我们完全可以用下一层的数据维护出当前位的数据
具体实现可以看代码
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<vector> using namespace std; typedef long long ll; inline ll read() { ll x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); } return x*f; } const int mo=1e9+7; inline int fk(int x) { return x>=mo ? x-mo : x; } ll T,L,R; struct dat { ll tot,sum,sum2; dat (ll _tot=0,ll _sum=0,ll _sum2=0) { tot=_tot,sum=_sum,sum2=_sum2; } inline dat operator + (const dat &tmp) const { return dat(fk(tot+tmp.tot),fk(sum+tmp.sum),fk(sum2+tmp.sum2)); } inline dat operator * (const ll &tmp) const { return dat(tot, fk(tot*tmp%mo + sum) , fk( fk((tot*tmp%mo)*tmp%mo + (2ll*tmp%mo)*sum%mo) + sum2 ) ); } }f[19][9][9][2]; ll Power[19]; vector <int> V; dat dfs(int p,int sum,int now,bool lim) { if(!p) return (sum&&now) ? dat(1,0,0) : dat(0,0,0); dat &t=f[p][sum][now][lim]; if(t.tot!=-1) return t; t.tot=0; for(int k=0;k<=9;k++) { if(lim&&k>V[p-1]) break; if(k==7) continue; dat add=dfs(p-1,(sum+k)%7,(now*10+k)%7,lim&(k==V[p-1])); t=t + ( add * (Power[p-1]*k%mo) ); } // cout<<p<<" "<<sum<<" "<<now<<" "<<lim<<" "<<t.tot<<" "<<t.sum<<" "<<t.sum2<<endl; return t; } inline void Clr() { for(int i=1;i<=18;i++) for(int j=0;j<7;j++) for(int k=0;k<7;k++) f[i][j][k][0]=f[i][j][k][1]=dat(-1,0,0); } int main() { T=read(); Power[0]=1; for(int i=1;i<=18;i++) Power[i]=Power[i-1]*10%mo; while(T--) { L=read()-1,R=read(); ll now=R; V.clear(); Clr(); while(now) V.push_back(now%10),now/=10; ll ans=dfs(V.size(),0,0,1).sum2; now=L; V.clear(); Clr(); while(now) V.push_back(now%10),now/=10; printf("%d ",fk(ans-dfs(V.size(),0,0,1).sum2+mo)); } return 0; }