A serious math problem
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Xiao Jun likes math and he has a serious math question for you to finish.
Define (F[x]) to the (xor) sum of all digits of (x) under the decimal system,for example (F(1234) = 1 xor 2 xor 3 xor 4 = 4).
Two numbers (a,b(a≤b)) are given,figure out the answer of (F[a] + F[a+1] + F[a+2]+…+ F[b−2] + F[b−1] + F[b]) doing a modulo (10^9+7).
Input
The first line of the input is a single integer (T(T<26)), indicating the number of testcases.
Then (T) testcases follow.In each testcase print three lines :
The first line contains one integers (a).
The second line contains one integers (b).
(1≤|a|,|b|≤100001),(|a|) means the length of (a).
Output
For each test case, output one line "Case #x: y", where x is the case number (starting from 1) and y is the answer.
Sample Input
4
0
1
2
2
1
10
9999
99999
Sample Output
Case #1: 1
Case #2: 2
Case #3: 46
Case #4: 649032
Source
BestCoder Round #55 ($)
这就是数位dp。。。。又想起了当年我作为一个被毒害的小朋友去写windy数的恐惧(哪天再去做一遍233)
我们来简单说一下这道题的做法:
(dp[i][j]) 表示(i)位数,异或值为(j)的数的个数。((e.g. 0-9 10 - 99 100 - 999 ......))
表示这个转移很暴力~~(代码展示---)
然而数位dp和别的不同的是,dp其实只是你的预处理。。。。你可能还要计数。。。(蒟蒻表示计数比dp难)
需要我们做的操作是求出所有小于等于(a)的自然数的异或值的和。而我们预处理的是很多个区间的答案,所以我们还要统计一下。
我们需要把(a)这个数给拆成很多个区间。。。
举个栗子:
(3122=(0~999)+(1000~1999) + (2000~2999) + (3000 ~ 3589))
((3000~3122)=(3000~3099)+(3100~3122))
((3100~3122)=(3100~3109) + (3110~3119) + (3120~3122))
按这种方法分解以后,我们就和计数啦~
(注意:代码中可以看出,我们传进去是(a),实际上返回的是(a-1)的答案,所以适当调整一下~)
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100005, mod = 1e9 + 7;
char a[maxn], b[maxn];
int dp[maxn][20], ans[20];
int cas, last, qwe;
inline void prepare()
{
dp[0][0] = 1;
for(int i = 0; i <= 9; ++i) dp[1][i] = 1;
for(int i = 2; i < maxn; ++i)
for(int j = 0; j < 10; ++j)
for(int k = 0; k <= 15; ++k)
dp[i][j ^ k] += dp[i - 1][k], dp[i][j ^ k] %= mod;
}
inline int workk(char * str)
{
int len = strlen(str + 1); int pre = 0; int ret = 0;
memset(ans, 0, sizeof(ans));
for(int i = 1; i <= len; ++i)
{
int num = str[i] - '0';
for(int j = 0; j < num; ++j)
{
for(int k = 0; k <= 15; ++k)
{
ans[pre ^ j ^ k] += dp[len - i][k];
ans[pre ^ j ^ k] %= mod;
}
}
pre ^= num;
}
for(int i = 1; i <= 15; ++i) ret = (ret + (long long)i * ans[i]) % mod;
return ret;
}
int main()
{
prepare();
int t; scanf("%d", &t);
while(t--)
{
cas++; qwe = 0; last = 0;
scanf("%s", a + 1); scanf("%s", b + 1); int p = strlen(b + 1);
for (int i = 1; i <= p; i++) last ^= (b[i] - '0');
qwe = (workk(b) - workk(a) + mod) % mod;
qwe = (qwe + last) % mod;
printf("Case #%d: %d
", cas, qwe);
}
return 0;
}