zoukankan      html  css  js  c++  java
  • cs20_4-2

    0. 华师-张凯旭问我启发的一个学习资料

    1. 得到的一些经验

    • 帮助别人,回答别人比较尖锐的问题的过程中,学到的东西还是很多的,搜索的过程中,总能得到意外的收获

    • 回到上面张凯旭这个问题:

    • 1-如何加载/保存原模型?

      • 目前tf(1.8)每次保存模型其实分三个文件:xxx.meta, xxx.index, xxx.data-yyy

        (1)xxx.meta指的是meta graph,这是一个 protocol buffer,保存了完整的 Tensorflow 图,即所有变量、操作和集合等。(2)xxx.index和xxx.data-yyy都是一个二进制文件包含了所有权重、偏置、梯度和其他变量的值。

      • 并且多次保存最终形成一个checkpoint文件

        查看其内容:保存有最近若干个step保存的ckpt name,并且默认最后一次保存的ckpt为系统重新加载的model:

      • 所以最终保存有两类信息:graph和value of variables.

        import tensorflow as tf
        w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
        w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
        saver = tf.train.Saver()
        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        # saver.save(sess, 'my_test_model')
        saver.save(sess, 'my_test_model',global_step=1000) # 这种更常见,带上step
        # 一些特殊设置
        #saves a model every 2 hours and maximum 4 latest models are saved.
        # saver = tf.train.Saver(max_to_keep=4, keep_checkpoint_every_n_hours=2)
        
        # This will save following files in Tensorflow v >= 0.11
        # my_test_model-1000.data-00000-of-00001
        # my_test_model-1000.index
        # my_test_model-1000.meta
        # checkpoint
        
    • 2-如何加载预训练的模型

       # 1-加载网络结构
       saver = tf.train.import_meta_graph('my_test_model-1000.meta') # 将定义在.meta的网络导入到当前图中,但还没有参数值
      
      # 2-加载参数
      saver.restore(sess, tf.train.latest_checkpoint('./'))
      
      # 总结一下:
      with tf.Session() as sess:
        new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
        new_saver.restore(sess, tf.train.latest_checkpoint('./'))
          
          
      # 再举个例子:
      with tf.Session() as sess:    
          saver = tf.train.import_meta_graph('my-model-1000.meta') # 假设这里面有w1,w2
          saver.restore(sess,tf.train.latest_checkpoint('./'))
          print(sess.run('w1:0')) # 现在w1在当前sess可使用,直接使用即可
      ##Model has been restored. Above statement will print the saved value of w1.
      
    • 关于restore之后的操作:有3种:(1)继续training(接着上次的断点继续training,这个最简单); (2)prediction(换个input_X做inference); (3)修改网络结构做fine-tune;

    • 参考自:https://www.jianshu.com/p/8850127ed25d

    2. 一个toy example: 先saver再restore最后做prediction

    1. 创建model A:

      import tensorflow as tf
       
      #Prepare to feed input, i.e. feed_dict and placeholders
      w1 = tf.placeholder("float", name="w1")
      w2 = tf.placeholder("float", name="w2")
      b1= tf.Variable(2.0,name="bias")
      feed_dict ={w1:4,w2:8}
       
      #Define a test operation that we will restore
      w3 = tf.add(w1,w2)
      w4 = tf.multiply(w3,b1,name="op_to_restore")
      sess = tf.Session()
      sess.run(tf.global_variables_initializer())
       
      #Create a saver object which will save all the variables
      saver = tf.train.Saver()
       
      #Run the operation by feeding input
      print sess.run(w4,feed_dict)
      #Prints 24 which is sum of (w1+w2)*b1 
       
      #Now, save the graph
      saver.save(sess, 'my_test_model',global_step=1000)
      
      ##############################################################################
      # 与上面那段程序无关,
      # 是科普:如何基于graph来获取graph中的variable/Tensor/placeholders 
      #How to access saved variable/Tensor/placeholders 
      # 先获取graph: e.g. graph = tf.get_default_graph()
      w1 = graph.get_tensor_by_name("w1:0")
      ## How to access saved operation
      op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
      
    2. restore A 并且 重新使用new_input做prediction:

      import tensorflow as tf
       
      sess=tf.Session()    
      #First let's load meta graph and restore weights
      saver = tf.train.import_meta_graph('my_test_model-1000.meta')
      saver.restore(sess,tf.train.latest_checkpoint('./'))
       
       
      # Now, let's access and create placeholders variables and
      # create feed-dict to feed new data
       
      graph = tf.get_default_graph()
      w1 = graph.get_tensor_by_name("w1:0")
      w2 = graph.get_tensor_by_name("w2:0")
      feed_dict ={w1:13.0,w2:17.0} # new_input,用来做prediction
       
      #Now, access the op that you want to run. 
      op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
       
      print sess.run(op_to_restore,feed_dict)
      #This will print 60 which is calculated 
      #using new values of w1 and w2 and saved value of b1
      
    3. restore A 然后 fine-tune A

      import tensorflow as tf
       
      sess=tf.Session()    
      #First let's load meta graph and restore weights
      saver = tf.train.import_meta_graph('my_test_model-1000.meta')
      saver.restore(sess,tf.train.latest_checkpoint('./'))
       
       
      # Now, let's access and create placeholders variables and
      # create feed-dict to feed new data
       
      graph = tf.get_default_graph()
      w1 = graph.get_tensor_by_name("w1:0")
      w2 = graph.get_tensor_by_name("w2:0")
      feed_dict ={w1:13.0,w2:17.0}
       
      #Now, access the op that you want to run. 
      op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
       
      #Add more to the current graph
      add_on_op = tf.multiply(op_to_restore,2) # 这是相比A新增的一个op
       
      print sess.run(add_on_op,feed_dict)
      #This will print 120. # 相当于在最后一个op后面再接一个op,其实在A任何地方都是可以修改的
      

    3. 一个真实例子:先saver再restore最后做fine-tune

    # 部分代码,有时间再改为完整的真实代码
    # ......
    # ......
    saver = tf.train.import_meta_graph('vgg.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./')) # 加载预训练好的一组变量值
    # Access the graph
    graph = tf.get_default_graph()
    ## Prepare the feed_dict for feeding data for fine-tuning
     
    #Access the appropriate output for fine-tuning
    fc7= graph.get_tensor_by_name('fc7:0')
     
    #use this if you only want to change gradients of the last layer
    fc7 = tf.stop_gradient(fc7) # It's an identity function
    fc7_shape= fc7.get_shape().as_list()
     
    new_outputs=2
    weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
    biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
    output = tf.matmul(fc7, weights) + biases
    pred = tf.nn.softmax(output)
     
    # Now, you run this with fine-tuning data in sess.run()
    # 定义loss, 然后train_op, 然后run(train_op)进行bp
    
    • 本代码,未完待续...

    4. 参考:

    https://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/

    两个先修实践练习:

    (1) https://cv-tricks.com/artificial-intelligence/deep-learning/deep-learning-frameworks/tensorflow/tensorflow-tutorial/

    (2) https://cv-tricks.com/tensorflow-tutorial/training-convolutional-neural-network-for-image-classification/

  • 相关阅读:
    測试AtomicInteger与普通int值在多线程下的递增操作
    《漫画线性代数》读书笔记 矩阵
    Android下雪动画的实现
    Live555实战之交叉编译live555共享库
    JAVA_SE基础——24.面向对象的内存分析
    Linux下利用signal函数处理ctrl+c等信号
    tomcat6url请求400错误(%2F与%5C)
    python的交互式shell-ipython体验
    1906月读书清单
    Linux对变量的截取替换
  • 原文地址:https://www.cnblogs.com/LS1314/p/10371171.html
Copyright © 2011-2022 走看看