zoukankan      html  css  js  c++  java
  • 0_overview

    0. curse of high-dimension

    1. the historty of object detection

    2. iccv2009-multiclass

    1. Sharing invariances
      • object recognition is invariant to rotation, translation, scaling, lighting, …
      • typical case: cnn(convolutional layer and pooling layer)
    2. Sharing transformations
      • Transformations are shared
        and can be learnt from other tasks
      • style transfer
    3. Sharing in constellation models
    4. Sharing patches

    3. cvpr2007-part3

    1. classficator-discriminative methods
      • nearest neighbor
      • cnn
      • svm+kernel
      • CRF
    2. classficator-boosting
      • Cascade of classifiers 【级联分类器,能综合各个分类器的优势】

    4. slides of ICCV 2005 by Li Fei-Fei 【非常好的tutorial,值得反复看】

    1. obj det 的方法的最早分类

      • bag of words models
      • parts-based models
      • discriminative methods
      • three main issues:
        • Representation
          How to represent an object category
        • Learning
          How to form the classifier, given training data
        • Recognition
          How the classifier is to be used on novel data
    2. Representation

      • Generative / discriminative / hybrid
      • Appearance only or location and appearance
      • Invariances:
        View point
        Illumination
        Occlusion
        Scale
        Deformation
        Clutter
        etc.
      • Part-based or global w/sub-window
      • Use set of features or each pixel in image
    3. Learning:

      • Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
      • Methods of training: generative vs. discriminative
        (generativie 是用高斯混合模型去拟合两类obj的样本点;discriminative是尝试找一个分界面来划分两类obj样本点;假设这里是两类obj)
      • Level of supervision
        Manual segmentation; bounding box; image labels; noisy labels
      • Batch/incremental (on category and image level; user-feedback )
      • Training images:
        Issue of overfitting
        Negative images for discriminative methods Priors
      • Priors
    4. Recognition

      • Scale / orientation range to search over
      • Speed
    5. Bag-of-words models
      见ppt 【这个tutorial ppt非常赞!需要时可以拿来反复揣摩】

    6. part-based models
      见PPT 【依旧赞!】

    7. discriminative models
      见ppt 【赞!】

    8. concurrent segmentation and recognition
      见ppt 【赞!】

    参考:

    [1]. http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
    [2]. 【"patch" in an image】 https://www.quora.com/What-is-a-patch-in-image-processing

  • 相关阅读:
    1334: 好老师
    poj 2255 Tree Recovery
    2006浙大:简单计算器
    POJ1001(C++处理大数)
    HDU2159(二维完全背包)
    POJ2080:Calendar(计算日期)
    2008上交:Day of Week
    POJ1365:质因数分解
    VIJOS:P1706(舞会)
    POJ2449:K短路
  • 原文地址:https://www.cnblogs.com/LS1314/p/10380744.html
Copyright © 2011-2022 走看看