1. 列表生成式
################列表生成式
#method_1 {太原始,不推荐}
L = []
for i in range(1,11): #[1,11)
L.append(i*i)
print(L)
#method_2
#######最佳的办法
L1 = [x*x for x in range(1,11)]
print(L1)
L2 = [x*x for x in range(1,11) if (x%2 == 0)]
print(L2)
L3 = [m+n for m in "ABC" for n in "XYZ"]
print(L3)
import os
dir = [d for d in os.listdir('.')] #.表示当前目录下
print(dir)
#考虑到for 可以同时迭代两个甚至更多变量,把他应用到 列表生成式
dict = {'name':'haozhang', 'gender':'male', 'city':'HG'}
for k,v in dict.items():
print(k,':',v)
print("
")
L4 = [k+':'+v for k,v in dict.items()]
print(L4)
#
L = ['ABC', 'Hong', 'KONG']
print(L)
L5 = [s.lower() for s in L]
print(L5)
L6 = ['ABC', 'HongKong', 123, '456']
print(L6)
L7 = [s.lower() for s in L6 if isinstance(s, str)]
print(L7)
L8 = [s.lower() for s in L6] #没有过滤整数,会报错
2. generator初步:
-
理解yield关键字的作用:
- 首先yield就像一个中断源,代码执行到yield处就中断,cpu执行其他函数去了。例如,
count = yield yyy
,代码到这一行,刚刚碰到yield就暂停本generator函数,并保存当前状态等待恢复。- 直到
next(对象名)
,或者send(实参)
,来激活这一行语句。- 暂停yield的同时,向主调函数返回yyy {就这个功能而言,yield yyy等价于return yyy}
- 终上所述,yield首先是挂起当前的generator函数,然后可以返回一个数据给主调函数(即使用了next(),send(),或者
用for迭代这个generator函数
的语句)。用for迭代这个generator函数
本质还是利用了next(对象名)
-
代码测试:
测试generator
以创建list作为对比
L = [x*x for x in range(1,11)]
print(L)G = (x*x for x in range(1,11)) #Generator表达式
print(G)
print(next(G))
print(next(G))
print(" ")g = (xx for x in range(1,11)) #构造了一个generator类并返回了一个它的对象
for y in g: #迭代g的每一项xx
print(y)
print(" ")测试第二种generator :Generator函数
采用函数方式
def fib(n):
i,a,b = 0,0,1 #fib(0) = 0, fib(1) = 1, fib(2) = 1
while i < n: #执行n-1次,i的范围是[0,n-1],因为默认是fib(1),所以后面都是返回fib(n)
print(b)
a,b = b,a+b
i = i + 1
return 'done'
fib(6)
print(" ")采用yield关键字,用generator实现
def G_fib(n): #实际上等价于创建了一个generator类,虽然表面上是一个函数
i,a,b = 0,0,1
while i < n: #[0,n-1]
yield b #此次返回并暂时挂起
a,b = b,a+b
i = i + 1
g2 = G_fib(6) #返回一个generator类创建的对象g2
print(g2)
for x in g2: #迭代g2中的每一项即:fib(i)
print(x)
print(" ")创建一个产生所有奇数的generator
def odd():
i = 1
while True:
yield i
i = i + 2
g3 = odd()
print(next(g3))
print(next(g3))
print(next(g3))
print(" ")理论上可以通过for x in g3 遍历足够多的,或者说是所有的奇数,但这里没有必要
{即节省内存,因为每次只会创建一个item;另外,非常的简洁地可以代表一个无穷的stream}
实现一个2^n{乘方}
def powtwo(n):
i = 1
while i <= n: #[1,n],操作了n次
yield 2 ** i
i += 1for x in powtwo(5): #计算2^5
print("中间过程依次是:",x)
print("the result is = ",x)
print(" ")'''
实现一个假设我们有一个快餐连锁店的日志。日志的第四列是每小时售出的披萨数量,我们想对近5年的这一数据进行求和。
假设所有数据都是字符,不可用的数据都以"N/A"表示
with open('sells.log') as file:
pizza_col = (line[3] for line in file) #取第4列,构建一个tuple
per_hour = (int(x) for x in pizza_col if x != 'N/A') #依据上面的tuple构建generator表达式
print("Total pizzas sold = ",sum(per_hour))
'''#########################################################################################
'''
最后一个主题:获取generator中,用return关键字返回的值
{因为现在只会返回yield关键字所带的值}通过解析StopIteration的内容获取return关键字后的值
以获取杨辉三角的最后return的'haozhang'为例
'''
做法1
def triangles():
N = [1] #要求返回N为list
while True:
yield N
N.append(0) #辅助元:处理每一行两边{左边一个1,右边一个1},保证它们在下一行依旧为1:0+1还是1
#append完之后,本行{假设为k-1} 新增N[k] = 0,同时在python中N[k]作为倒数第一个元素,也为N[-1]
#具体实现方法:对于下一行{假设是k}的N, N[0] = N[-1]+N[0],N[k] = N[k-1]+N[k]
N = [N[i-1]+N[i] for i in range(len(N))]i = 0
for L in triangles(): #匿名创建了triangles的generator对象,并迭代
print(L)
i += 1
if (i == 10): #打印10行
break
print(" ")做法2:错位相加{L1左边和L2右边各自添加一个[0],即长度加1}
[0]+N等价于在N左边加了一个元素0,N+[0]等价于在N右边加了一个元素0{可在控制台测试}
zip(x, y)等价于:若x=[x1,x2], y=[y1,y2], 则zip(x,y) = [(x1,y1), (x2,y2)]
def triangles_2():
N = [1]
while True:
yield N
N = [sum(i) for i in zip([0]+N, N+[0])]
j = 0
for L2 in triangles_2():
print(L2)
j += 1
if (j == 10): #输出10行即停止
break
print(" ")加入try-catch实现把return关键字返回的值打印出来
def My_Triangle(n):
N = [1]
i = 0
while (i < n): #[0,n-1]次
yield N
N = [sum(i) for i in zip([0]+N, N+[0])]
i += 1
return "haozhang is ok" #我想把这个也拿出来!GT = My_Triangle(10)
while True:
try:
x = next(GT)
print(x)
except StopIteration as e:
print("Generation return value is: ", e.value)
break -
理解send()的作用:
- next()等价于send(None),系统向generator发信号“在中断处重新启动”就是send(实参)的功劳,send()才是核心。
send(数据值)
等价于 给yield左边的变量赋值,例如:count = yield x
,当使用send(555)
激活上述的yield时,等价于执行count = 555
,然后再执行count=yield
的下一句代码- 终上所述,
send(实参)
可以给generator函数传入数据,并同时激活这个generator函数
-
代码测试:
def stupid_fib(n):
index = 0
a = 0
b = 1
while index < n:
sleep_cnt = yield b
print('let me think {0} secs'.format(sleep_cnt))
time.sleep(sleep_cnt)
a, b = b, a + b
index += 1print('-'10 + 'test yield send' + '-'10)
N = 20
sfib = stupid_fib(N) #得到一个generator对象
fib_res = next(sfib) #启动generator
while True:
print(fib_res)
try:
fib_res = sfib.send(random.uniform(0, 0.5)) #给函数传入暂停时长sleep_cnt,并重新激活generator
except StopIteration:
break
参考文献:
- http://python.jobbole.com/86069/
- 尚学堂python视频
- 廖雪峰python3