zoukankan      html  css  js  c++  java
  • Spark之键值RDD转换(转载)

    1.mapValus(fun):对[K,V]型数据中的V值map操作
    (例1):对每个的的年龄加2

    object MapValues {
      def main(args: Array[String]) {
        val conf = new SparkConf().setMaster("local").setAppName("map")
        val sc = new SparkContext(conf)
        val list = List(("mobin",22),("kpop",20),("lufei",23))
        val rdd = sc.parallelize(list)
        val mapValuesRDD = rdd.mapValues(_+2)
        mapValuesRDD.foreach(println)
      }
    }
    输出:
    (mobin,24)
    (kpop,22)
    (lufei,25)
    (RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)


     
     
    2.flatMapValues(fun):对[K,V]型数据中的V值flatmap操作
    (例2):

    //省略<br>val list = List(("mobin",22),("kpop",20),("lufei",23))
    val rdd = sc.parallelize(list)
    val mapValuesRDD = rdd.flatMapValues(x => Seq(x,"male"))
    mapValuesRDD.foreach(println)

    输出:
    (mobin,22)
    (mobin,male)
    (kpop,20)
    (kpop,male)
    (lufei,23)
    (lufei,male)
    如果是mapValues会输出:
    (mobin,List(22, male))
    (kpop,List(20, male))
    (lufei,List(23, male))
    (RDD依赖图)


     
     
    3.comineByKey(createCombiner,mergeValue,mergeCombiners,partitioner,mapSideCombine)
     
       comineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions)
     
       comineByKey(createCombiner,mergeValue,mergeCombiners)
     
    createCombiner:在第一次遇到Key时创建组合器函数,将RDD数据集中的V类型值转换C类型值(V => C),
    如例3:




    mergeValue:合并值函数,再次遇到相同的Key时,将createCombiner道理的C类型值与这次传入的V类型值合并成一个C类型值(C,V)=>C,
    如例3:

    mergeCombiners:合并组合器函数,将C类型值两两合并成一个C类型值
    如例3:

    partitioner:使用已有的或自定义的分区函数,默认是HashPartitioner
     
    mapSideCombine:是否在map端进行Combine操作,默认为true
     
    注意前三个函数的参数类型要对应;第一次遇到Key时调用createCombiner,再次遇到相同的Key时调用mergeValue合并值
     
    (例3):统计男性和女生的个数,并以(性别,(名字,名字....),个数)的形式输出

    object CombineByKey {
      def main(args: Array[String]) {
        val conf = new SparkConf().setMaster("local").setAppName("combinByKey")
        val sc = new SparkContext(conf)
        val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "Amy"))
        val rdd = sc.parallelize(people)
        val combinByKeyRDD = rdd.combineByKey(
          (x: String) => (List(x), 1),
          (peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + 1),
          (sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
        combinByKeyRDD.foreach(println)
        sc.stop()
      }
    }

    输出:
    (male,(List(Lufei, Kpop, Mobin),3))
    (female,(List(Amy, Lucy),2))
    过程分解:

    Partition1:
    K="male"  -->  ("male","Mobin")  --> createCombiner("Mobin") =>  peo1 = (  List("Mobin") , 1 )
    K="male"  -->  ("male","Kpop")  --> mergeValue(peo1,"Kpop") =>  peo2 = (  "Kpop"  ::  peo1_1 , 1 + 1 )    //Key相同调用mergeValue函数对值进行合并
    K="female"  -->  ("female","Lucy")  --> createCombiner("Lucy") =>  peo3 = (  List("Lucy") , 1 )
     
    Partition2:
    K="male"  -->  ("male","Lufei")  --> createCombiner("Lufei") =>  peo4 = (  List("Lufei") , 1 )
    K="female"  -->  ("female","Amy")  --> createCombiner("Amy") =>  peo5 = (  List("Amy") , 1 )
     
    Merger Partition:
    K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
    K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))

    (RDD依赖图)


     


    4.foldByKey(zeroValue)(func)
     
      foldByKey(zeroValue,partitioner)(func)
     
      foldByKey(zeroValue,numPartitiones)(func)
     
    foldByKey函数是通过调用CombineByKey函数实现的
     
    zeroVale:对V进行初始化,实际上是通过CombineByKey的createCombiner实现的  V =>  (zeroValue,V),再通过func函数映射成新的值,即func(zeroValue,V),如例4可看作对每个V先进行  V=> 2 + V  
     
    func: Value将通过func函数按Key值进行合并(实际上是通过CombineByKey的mergeValue,mergeCombiners函数实现的,只不过在这里,这两个函数是相同的)
    例4:
    //省略
        val people = List(("Mobin", 2), ("Mobin", 1), ("Lucy", 2), ("Amy", 1), ("Lucy", 3))
        val rdd = sc.parallelize(people)
        val foldByKeyRDD = rdd.foldByKey(2)(_+_)
        foldByKeyRDD.foreach(println)

    输出:
    (Amy,2)
    (Mobin,4)
    (Lucy,6)
    先对每个V都加2,再对相同Key的value值相加。
     
     
    5.reduceByKey(func,numPartitions):按Key进行分组,使用给定的func函数聚合value值, numPartitions设置分区数,提高作业并行度
    例5

    //省略
    val arr = List(("A",3),("A",2),("B",1),("B",3))
    val rdd = sc.parallelize(arr)
    val reduceByKeyRDD = rdd.reduceByKey(_ +_)
    reduceByKeyRDD.foreach(println)
    sc.stop

    输出:
    (A,5)
    (A,4)
    (RDD依赖图)


     
    6.groupByKey(numPartitions):按Key进行分组,返回[K,Iterable[V]],numPartitions设置分区数,提高作业并行度
    例6:

    //省略
    val arr = List(("A",1),("B",2),("A",2),("B",3))
    val rdd = sc.parallelize(arr)
    val groupByKeyRDD = rdd.groupByKey()
    groupByKeyRDD.foreach(println)
    sc.stop

    输出:
    (B,CompactBuffer(2, 3))
    (A,CompactBuffer(1, 2))
     
    以上foldByKey,reduceByKey,groupByKey函数最终都是通过调用combineByKey函数实现的
     
    7.sortByKey(accending,numPartitions):返回以Key排序的(K,V)键值对组成的RDD,accending为true时表示升序,为false时表示降序,numPartitions设置分区数,提高作业并行度
    例7:

    //省略sc
    val arr = List(("A",1),("B",2),("A",2),("B",3))
    val rdd = sc.parallelize(arr)
    val sortByKeyRDD = rdd.sortByKey()
    sortByKeyRDD.foreach(println)
    sc.stop

    输出:
    (A,1)
    (A,2)
    (B,2)
    (B,3)
     
    8.cogroup(otherDataSet,numPartitions):对两个RDD(如:(K,V)和(K,W))相同Key的元素先分别做聚合,最后返回(K,Iterator<V>,Iterator<W>)形式的RDD,numPartitions设置分区数,提高作业并行度
    例8:

    //省略
    val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
    val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
    val rdd1 = sc.parallelize(arr, 3)
    val rdd2 = sc.parallelize(arr1, 3)
    val groupByKeyRDD = rdd1.cogroup(rdd2)
    groupByKeyRDD.foreach(println)
    sc.stop

    输出:
    (B,(CompactBuffer(2, 3),CompactBuffer(B1, B2)))
    (A,(CompactBuffer(1, 2),CompactBuffer(A1, A2)))
    (RDD依赖图)


     
     
    9.join(otherDataSet,numPartitions):对两个RDD先进行cogroup操作形成新的RDD,再对每个Key下的元素进行笛卡尔积,numPartitions设置分区数,提高作业并行度
    例9
    //省略
    val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
    val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
    val rdd = sc.parallelize(arr, 3)
    val rdd1 = sc.parallelize(arr1, 3)
    val groupByKeyRDD = rdd.join(rdd1)
    groupByKeyRDD.foreach(println)

    输出:

    (B,(2,B1))
    (B,(2,B2))
    (B,(3,B1))
    (B,(3,B2))
     
    (A,(1,A1))
    (A,(1,A2))
    (A,(2,A1))
    (A,(2,A2)

    (RDD依赖图)


     
     
    10.LeftOutJoin(otherDataSet,numPartitions):左外连接,包含左RDD的所有数据,如果右边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
    例10:
    //省略
    val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3),("C",1))
    val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
    val rdd = sc.parallelize(arr, 3)
    val rdd1 = sc.parallelize(arr1, 3)
    val leftOutJoinRDD = rdd.leftOuterJoin(rdd1)
    leftOutJoinRDD .foreach(println)
    sc.stop

    输出:

    (B,(2,Some(B1)))
    (B,(2,Some(B2)))
    (B,(3,Some(B1)))
    (B,(3,Some(B2)))
     
    (C,(1,None))
     
    (A,(1,Some(A1)))
    (A,(1,Some(A2)))
    (A,(2,Some(A1)))
    (A,(2,Some(A2)))

    11.RightOutJoin(otherDataSet, numPartitions):右外连接,包含右RDD的所有数据,如果左边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
    例11:
    //省略
    val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
    val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"),("C","C1"))
    val rdd = sc.parallelize(arr, 3)
    val rdd1 = sc.parallelize(arr1, 3)
    val rightOutJoinRDD = rdd.rightOuterJoin(rdd1)
    rightOutJoinRDD.foreach(println)
    sc.stop
    输出:

    (B,(Some(2),B1))
    (B,(Some(2),B2))
    (B,(Some(3),B1))
    (B,(Some(3),B2))
     
    (C,(None,C1))
     
    (A,(Some(1),A1))
    (A,(Some(1),A2))
    (A,(Some(2),A1))
    (A,(Some(2),A2))
     
    0
  • 相关阅读:
    C#:String.Format数字格式化输出
    System.BadImageFormatException : 未能加载文件或程序集“Medici.PaymentRecover, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null”或它的某一个依赖项。试图加载格式不正确的程序。
    How to debug windows service
    中文字符utf-8编码原则
    获取当前文件的绝对路径
    finfo_file
    usort 函数
    snmp 简单网管协议
    $this
    prinft he sprintf
  • 原文地址:https://www.cnblogs.com/LT-blogs/p/6210138.html
Copyright © 2011-2022 走看看