看完题面,我马上趁教练不注意 打开了某399小游戏。熟练地找到了这个游戏。颓废了一上午 就想到怎么做了。
对于一个灯和所以与他相连的等灯。每个灯只有按和不按两种情况。为什么呢? 如果同一盏灯按了两次。就跟没按时一样的。三次亦是如此。由此可得,按奇数次的效果等于按了一次,按偶数次等于没按。
确定了这个关系,我们就可以使用位运算,异或进行列方程了。
啥?方程?等等,smg?
我们要求的是每个灯是否被按。
这就是我们的未知数。
我们设计一下系数,如果一盏灯对于其他的灯有影响,那么这盏灯所对应的未知数在被影响的灯的方程中就是一。如果某一盏灯对其他灯没有影响,他的系数就是0.(0异或任何数都是原数,对答案不产生影响)。
又由于异或具有交换律和结合律。所以可以用来移项。
而题目中是所问的是最少关多少盏灯灯全部打开所有灯。
这就提示我们,有很大可能会出现自由元(就是可以任意取值的未知数)
然后我们来看数据范围。
(ok)
位置数个数小于等于35.
枚举全部状态肯定不行。
不过如果只枚举自由元,再加上最优性剪枝,应该是可以跑过去的。
233
然后我是stl毒瘤选手。
怎么能不用bitset呢
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<bitset>
using namespace std;
bitset<38>g[38];
int n,m;
void gauss()
{
for(int i=1;i<=n;i++)
{
int r=i;
for(int j=i+1;j<=n;j++)
if(g[j][i])
{
r=j;
break;
}
if(r!=i)
swap(g[i],g[r]);
for(int j=i+1;j<=n;j++)
if(g[j][i])
g[j]^=g[i];//bitset可以整体异或
}
}
int ans=0x7fffffff;
int base[38];
void dfs(int now,int sum)//就是回带,now就是回带到多少个了(n~1),sum为当前开的灯的数量
{
if(sum>ans)
return ;
if(now==0)
{
ans=min(ans,sum);
return ;
}
if(g[now][now])
{
base[now]=g[now][n+1];
for(int i=now+1;i<=n;i++)
base[now]^=(base[i]&g[now][i]);//要乘系数。这里利用了与运算进行加速(为什么可以,可以自行枚举判断真确性)
if(base[now])//如果这个灯是开的
dfs(now-1,sum+1);
else
dfs(now-1,sum);
}
else//自由元
{
base[now]=0;
dfs(now-1,sum);
base[now]=1;
dfs(now-1,sum+1);//枚举一波
}
}
int main()
{
scanf("%d%d",&n,&m);
int a,b;
for(int i=1;i<=n;i++)
g[i][n+1]=g[i][i]=1;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
g[a][b]=1;
g[b][a]=1;
}
gauss();
dfs(n,0);
printf("%d",ans);
}